Impact of the Space Charge Distribution in the Model Source of Quasi-Electrostatic Whistler-Mode Waves on the Effective Length of a Short Receiving Antenna

  • E.A. ShirokovEmail author
  • A. G. Demekhov

In our previous paper [1] it was shown, using the theory of antennas in plasmas, that the effective length leff of a receiving dipole antenna can be much larger than its geometric length in case quasielectrostatic chorus emissions propagating close to the resonance cone are received. In order to simplify calculations of leff, it was proposed to use a model (“effective”) source of such emissions because taking into account all of the real source properties (that are determined by the nonlinear processes of interaction between waves and charged particles in a wide region of space) would lead to unreasonably cumbersome calculations. The present paper analyzes how the effective length of the spacecraft-borne receiving antenna depends on the parameters of the space charge distribution in the model source of quasi-electrostatic chorus emissions. It is found that the length leff decreases as a power function (with exponent −1/2) with increasing distance (along the group velocity resonance cone) between the model source and the receiving antenna. This relationship is correct up to the distance at which the effective length becomes of the order of the geometric length. At longer distances, the radiation field loses its resonance nature because of the excitation of an electromagnetic (quasi-longitudinal) wave. It is shown that under conditions of the Earth’s magnetosphere, the approximation we used can remain valid up to distances of the order of the geomagnetic field line length, which confirms the importance of the discussed effect for correct interpretation of the electric wave measurement data in the whistler-mode frequency range. It is also shown that the length leff changes by less than 10% when the characteristic scale of spectrum of the charge distribution along the model source varies as Δ ∼ (0.1–1.0) kobs, where the wave number kobs corresponds to the observed spectral maximum of radiation at a given frequency.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.A. Shirokov, A.G. Demekhov, Yu.V.Chugunov, and A.V. Larchenko, Radio Sci., 52, No. 7, 884 (2017).ADSCrossRefGoogle Scholar
  2. 2.
    G. A. Morin and K. G. Balmain, Radio Sci., 28, No. 2, 151 (1993).ADSCrossRefGoogle Scholar
  3. 3.
    M. Tsutsui, I. Nagano, H. Kojima, et al., Radio Sci., 32, No. 3, 1101 (1997).ADSCrossRefGoogle Scholar
  4. 4.
    Yu. V. Chugunov, Radiophys. Quantum Electron., 44, Nos. 1–2, 151 (2001).CrossRefGoogle Scholar
  5. 5.
    Y. V. Chugunov, E. A. Mareev, V. Fiala, and H. G. James, Radio Sci., 38, No. 2, 1022 (2003).ADSCrossRefGoogle Scholar
  6. 6.
    Y.V. Chugunov and V. Fiala, IEEE Trans. Antennas Propag., 54, No. 10, 2750 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    Y. V. Chugunov, V. Fiala, M. Hayosh, and H. G. James, Radio Sci., 47, No. 6, RS6002 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    Yu.V. Chugunov and E.A. Shirokov, Cosmic Res., 54, No. 3, 198 (2016).ADSCrossRefGoogle Scholar
  9. 9.
    C. A. Balanis, Antenna Theory: Analysis and Design, 4th edition, Wiley, Hoboken (2016).Google Scholar
  10. 10.
    E.A. Mareev and Yu. V. Chugunov, Antennas in Plasmas [in Russian], Inst. Appl. Phys., Rus. Acad. Sci., Nizhny Novgorod (1991).Google Scholar
  11. 11.
    A.A. Andronov and Yu.V. Chugunov, Sov. Phys. Usp., 18, No. 5, 343 (1975).ADSCrossRefGoogle Scholar
  12. 12.
    W.C. Chew, J.-M. Jin, E. Michielssen, and J. Song., eds., Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, Norwood (2001).Google Scholar
  13. 13.
    Yu.V. Chugunov, Radiophys. Quantum Electron., 11, No. 12, 1033 (1968).ADSCrossRefGoogle Scholar
  14. 14.
    Yu.V. Chugunov, E. A. Shirokov, and I.A. Fomina, Radiophys. Quantum Electron., 58, No. 5, 318 (2015).ADSCrossRefGoogle Scholar
  15. 15.
    R. A. Helliwell, Whistlers and Related Ionospheric Phenomena, Stanford University Press, Stanford (1965).Google Scholar
  16. 16.
    V. Y. Trakhtengerts, J. Geophys. Res. Space Phys., 100, No. A9, 17205 (1999).ADSCrossRefGoogle Scholar
  17. 17.
    V. Y. Trakhtengerts, Ann. Geophys., 17, No. 1, 95 (1998).ADSCrossRefGoogle Scholar
  18. 18.
    Y. Omura, Y. Katoh, and D. Summers, J. Geophys. Res. Space Phys., 113, No. A4, A04223 (2008).ADSCrossRefGoogle Scholar
  19. 19.
    A. G. Demekhov, U. Taubenschuss, and O. Santolík, J. Geophys. Res. Space Phys., 122, No. 1, 166 (2017).ADSCrossRefGoogle Scholar
  20. 20.
    M.V. Fedoryuk, The Saddle-Point Method [in Russian], Librocom, Moscow (2010).Google Scholar
  21. 21.
    V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas, Pergamon Press, Oxford (1970).Google Scholar
  22. 22.
    T. H. Stix, Waves in Plasmas, Springer-Verlag, New York (1992).Google Scholar
  23. 23.
    O. Santolík, M. Parrot, and F. Lefeuvre, Radio Sci., 38, No. 1, 1010 (2003).ADSCrossRefGoogle Scholar
  24. 24.
    J. L. Burch and V. Angelopoulos, eds., The THEMIS Mission, Springer-Verlag, New York (2009).Google Scholar
  25. 25.
    O. V. Agapitov, A.V.Artemyev, D. Mourenas, et al., J. Geophys. Res. Space Phys., 119, No. 3, 1606 (2014).ADSCrossRefGoogle Scholar
  26. 26.
    A. Roux, O. L. Contel, C. Coillot, et al., Space Sci. Rev., 141, Nos. 1–4, 265 (2008).Google Scholar
  27. 27.
    J. W. Bonnell, F. S. Mozer, G.T. Delory, et al., Space Sci. Rev., 141, Nos. 1–4, 303 (2008).ADSCrossRefGoogle Scholar
  28. 28.
    H. U. Auster, K.H.Glassmeier, W. Magnes, et al., Space Sci. Rev., 141, Nos. 1–4, 235 (2008).ADSCrossRefGoogle Scholar
  29. 29.
    E.A.Mareev and Yu.V. Chugunov, Radiophys. Quantum Electron., 30, No. 8, 713 (1987).ADSCrossRefGoogle Scholar
  30. 30.
    H. G. James, in: Lecture Notes in Physics, Vol. 687, Geospace Electromagnetic Waves and Radiation, Springer, Berlin (2006), p. 191.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia
  2. 2.Polar Geophysical InstituteApatityRussia

Personalised recommendations