Localization of a Motionless Sound Source by Simultaneous Suppression of Interference Using Incoherent Aperture Synthesis

  • A. A. Rodionov
  • V. Yu. SemenovEmail author
  • N. V. Savel’yev
  • K. S. Konovalov

We consider the problem of direction finding of a motionless sound source by using aperture synthesis. The emitted signal of the source is assumed to be time incoherent. This scenario is most interesting from the practical point of view, since the real sources mainly have a continuous emission spectrum. It was assumed that in addition to the sea noise, the receiving system was also affected by onboard interference caused by the mechanisms inside the carrier ship. The power of onboard interference greatly exceeded the power of the useful signal. The results of testing of the proposed algorithms using numerical and lake experiments are presented. It has been shown that, depending on the length and type of the trajectory of the carrier ship, different accuracies are achieved for the measured coordinates of a motionless source.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. S. Ivanenkov, P. I. Korotin, D. A. Orlov, et al., Gidroakustika, 14, No. 2, 117 (2011).Google Scholar
  2. 2.
    M. P. Hayes and P. T. Gough, IEEE J. Ocean. Eng., 34, No. 3, 207 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    S. W. Autrey, IEEE J. Ocean. Eng., 84, No. 2, 592 (1988).Google Scholar
  4. 4.
    S. Stergiopoulos and E. J. Sullivan, Acoust. Soc. Am., 86, No. 1, 158 (1989).ADSCrossRefGoogle Scholar
  5. 5.
    S. Kim, D. H. Youn, and C. Lee, IEEE J. Ocean. Eng., 27, No. 2, 322 (2002).ADSCrossRefGoogle Scholar
  6. 6.
    Y. Hou, J. Huang, M. Jiang, and Y. Jin, EURASIP J. Advances in Signal Proc., 2010, 751069 (2010).CrossRefGoogle Scholar
  7. 7.
    A. S. Ivanenkov, P. I. Korotin, D. A. Orlov, et al., Radiophys. Quantum Electron., 57, No. 2, 151 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    S. Stergiopoulos and H. Urban, IEEE J. Ocean. Eng., 17, No. 1, 16 (1992).ADSCrossRefGoogle Scholar
  9. 9.
    A. Ivanenkov, P. Korotin, D. Orlov, et al., in: Proc. Forum Acusticum., 27 June–1 July 2011, Aalborg, Denmark, p. 2509.Google Scholar
  10. 10.
    R. J. Urik, Principles of Hydroacoustics, 2nd ed, McGraw-Hill, New York, Toronto (1975).Google Scholar
  11. 11.
    V. I. Turchin, Introduction to Modern Theory of Signal Parameter Estimation [in Russian], Inst. Appl. Phys. RAS, Nizhny Novgorod (2005).Google Scholar
  12. 12.
    A. A. Rodionov and V. I. Turchin, Radiophys. Quantum Electron., 60, No. 1, 54 (2017).ADSCrossRefGoogle Scholar
  13. 13.
    S. Banerjee and R. Anindya, Linear Algebra and Matrix Analysis for Statistics, Taylor & Francis Group, Boca Raton (2014).CrossRefzbMATHGoogle Scholar
  14. 14.
    V.T.Ermolaev, A.G. Flaksman, and I. S. Sorokin, Radiophys. Quantum Electron., 55, No. 9, 641 (2012).Google Scholar
  15. 15.
    A.A. Rodionov and V.Yu. Semenov, in: Proc. of the Second All-Russia Acoustic Conf., June 6–9, 2017, Nizhny Novgorod [in Russian], p. 1041.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. A. Rodionov
    • 1
  • V. Yu. Semenov
    • 1
    • 2
    Email author
  • N. V. Savel’yev
    • 1
  • K. S. Konovalov
    • 1
  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia
  2. 2.N. I. Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia

Personalised recommendations