Advertisement

Nonlinear Dynamics of an Antiferromagnetic Spintronic Oscillator

  • A. R. SafinEmail author
  • S. A. Nikitov
Article
  • 14 Downloads

We study nonlinear dynamics of the spintronic nanosized antiferromagnetic terahertz oscillator consisting of an antiferromagnetic layer with easy-plane anisotropy (hematite) and a normal-metal (platinum) layer. Normal oscillation frequencies, namely, ferromagnetic and antiferromagnetic (terahertz) ones, are found. Their dependence on the value of a static magnetic field parallel to the sample plane is obtained. An approximate mathematical model in the form of the equations for the Néel-vector rotation angle in the azimuthal plane is developed for describing the oscillator dynamics. The adjustment characteristic, i.e., the dependence of the antiferromagnetic-mode frequency on the value of the direct current flowing in the platinum layer is obtained.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Sirtori, Nature, 417, 132 (2002).CrossRefGoogle Scholar
  2. 2.
    R. Kleiner, Science, 318, No. 5854, 1254 (2007).CrossRefGoogle Scholar
  3. 3.
    E. A. Nanni, W.R.Huang, K.-H. Hong, et al., Nat. Commun., 6, No. 8486, 1 (2015).Google Scholar
  4. 4.
    H.-W. Hubers, Nat. Photon., 4, 503 (2010).CrossRefGoogle Scholar
  5. 5.
    L. Ozyuzer, A. E. Koshelev, C. Kurter, et al., Science, 318, No. 5854, 1291 (2007).CrossRefGoogle Scholar
  6. 6.
    M. Tonouchi, Nat. Photon., 1, 97 (2007).CrossRefGoogle Scholar
  7. 7.
    Yu.V.Gulyaev, P. E. Zilberman, G. M. Mikhailov, and S.G.Chigarev, JETP Lett., 98, No. 11, 742 (2013).CrossRefGoogle Scholar
  8. 8.
    A. M. Kalashnikova, A.V.Kimel, and R. V. Pisarev, Physics—Uspekhi, 58, No. 2, 969 (2015).Google Scholar
  9. 9.
    T. Jungwirth, X. Marti, P. Wadley, et al., Nat. Nanotech., 11, 231 (2016).CrossRefGoogle Scholar
  10. 10.
    E.V.Gomonay and V.M. Loktev, Low Temp. Phys., 40, No. 1, 17 (2014).CrossRefGoogle Scholar
  11. 11.
    V. Baltz, A. Manchon, M. Tsoi, et al., Rev. Mod. Phys., 90, No. 1, 015005 (2018).CrossRefGoogle Scholar
  12. 12.
    O. Johansen, H. Skarsvag, and A. Brataas, Phys. Rev. B, 97, No. 5, 054423 (2018).CrossRefGoogle Scholar
  13. 13.
    R. Khymyn, I. Lisenkov, V. Tiberkevich, et al., Sci. Rep., 7, 43705 (2017).CrossRefGoogle Scholar
  14. 14.
    R. Cheng, J. Xiao, Q. Niu, et al., Phys. Rev. Lett., 113, No. 5, 057601 (2014).CrossRefGoogle Scholar
  15. 15.
    R. Cheng, J. Xiao, and A. Brataas, Phys. Rev. Lett., 116, No. 20, 207603 (2016).CrossRefGoogle Scholar
  16. 16.
    O. Sulymenko, O. Prokopenko, V. Tiberkevich, et al., Phys. Rev. Appl., 8, No. 6, 064007 (2017).CrossRefGoogle Scholar
  17. 17.
    T. Jungwirth, J. Wunderlich, and K. Olejnik, Nat. Mat., 11, 382 (2012).CrossRefGoogle Scholar
  18. 18.
    T. Moriya, Phys. Rev., 120, No. 1, 91 (1960).CrossRefGoogle Scholar
  19. 19.
    I.E. Dzialoshinskii, Sov. Phys. JETP, 5, No. 6, 1259 (1957).Google Scholar
  20. 20.
    P. W. Anderson, F.R.Merritt, J.P.Remeika, et al., Phys. Rev., 93, No. 4, 717 (1954).CrossRefGoogle Scholar
  21. 21.
    H. Kumagai, H. Abe, K. Ôno, et al., Phys. Rev., 99, No. 4, 1116 (1955). CrossRefGoogle Scholar
  22. 22.
    E. A. Turov, A. V. Kolchanov, V. V. Men’shenin, et al., Symmetry and Physical Properties of Antiferromagnets [in Russian], Fizmatlit, Moscow (2001).Google Scholar
  23. 23.
    L. V. Velikov and E.G.Rudashevskii, Sov. Phys. JETP, 29, No. 5, 836 (1969).Google Scholar
  24. 24.
    V. I. Ozhogin and V.G. Shapiro, Sov. Phys. JETP, 28, No. 5, 915 (1969).Google Scholar
  25. 25.
    M. I. Rabinovich and D. I. Trubetskov, Oscillations and Waves in Linear and Nonlinear Systems Kluwer, Dordrecht (1989).Google Scholar
  26. 26.
    K.K. Likharev, Introduction to the Dynamics of Josephson Junctions [in Russian], Nauka, Moscow (1985).Google Scholar
  27. 27.
    M. V. Kapranov, V. N. Kuleshov, and G.M.Utkin, Theory of Oscillations in Radio Engineering [in Russian], Nauka, Moscow (1984).Google Scholar
  28. 28.
    N. N. Bogolyubov and Yu. A. Mitropol’sky, Asymptotic Methods in the Theory of Nonlinear Oscillations [in Russian], Fizmatlit, Moscow (1963).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Moscow Energy InstituteMoscowRussia
  2. 2.V. A. Kotel’nikov Institute of Radio Engineering and Electronics of the Russian Academy of SciencesMoscowRussia

Personalised recommendations