Advertisement

Radiophysics and Quantum Electronics

, Volume 61, Issue 8–9, pp 681–688 | Cite as

Experimental Observation of the Self-Oscillatory Dynamics of the Regulation Contours of the Cardiovascular System

  • A. S. KaravaevEmail author
  • E. I. Borovkova
  • A. E. Runnova
  • A. R. Kiselev
  • M. O. Zhuravlev
  • V. I. Ponomarenko
  • M. D. Prokhorov
  • A. A. Koronovskii
  • A. E. Hramov
Article
  • 2 Downloads

In this work, we experimentally study the heart rate variability, photoplethysmograms, and electroencephalograms of healthy subjects in the course of active experiments with respiration, whose rate varied according to a known law. On the basis of the experimentally measured signals of the heart rate variability, photoplethysmograms, and electroencephalograms, it is shown that the low-frequency regulation processes with frequencies below 1 Hz interact with each other and are significantly influenced by the respiration process. The obtained results are indicative of the presence of several vegetative-regulation centers whose activity is manifested in the low-frequency dynamics of the signals of the heart rate variability, photoplethysmograms, and electroencephalograms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Guyton and J. Hall, Textbook of Medical Physiology, 12th Edition, Saunders Elsevier, Philadelphia (2006).Google Scholar
  2. 2.
    Yu. M. Romanovsky, N. V. Stepanova, and D. S. Chernavsky, Mathematical Simulation in Biophysics [in Russian], Space Research Institute, Moscow (2003).Google Scholar
  3. 3.
    “Heart rate variability,” in: Circulation, 93, 1043 (1996).Google Scholar
  4. 4.
    K. K. Jain, Med. Principl. Pract., 26, No. 5, 399 (2017).ADSCrossRefGoogle Scholar
  5. 5.
    E. Björnson, J. Borön, and A. Mardinoglu, Frontiers Physiol., 7, No. 2, 1 (2016).Google Scholar
  6. 6.
    E. H. Hon and S. T. Lee, Am. J. Obstet. Gynecol., 15, No. 87, 814 (1963).Google Scholar
  7. 7.
    V. I. Ponomarenko, M. D. Prokhorov, A. S. Karavaev, et al., Eur. Phys. J. Spec. Topics, 222, No. 10, 2687 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    A. S. Karavaev, A. E. Runnova, E. I. Borovkova, et al., Saratov Nauchn. Med. Zh., 12, No. 4, 541 (2016).Google Scholar
  9. 9.
    A. S. Karavaev, M. D. Prokhorov, V. I. Ponomarenko, et al., Chaos, 19, No. 3, 033112 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    A. A. Koronovskii, A.E. Hramov, V. I. Ponomarenko, and M. D. Prokhorov, Phys. Rev. E, 75, No. 5, 056207 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    A. R. Kiselev, V. I. Gridnev, M. D. Prokhorov, et al., Anatol. J. Cardiol., 14, No. 8, 701 (2014).CrossRefGoogle Scholar
  12. 12.
    A. R. Kiselev, V. I. Gridnev, M. D. Prokhorov, et al., J. Cardiovasc. Med., 13, No. 8, 491 (2012).CrossRefGoogle Scholar
  13. 13.
    N. A. Aladjalova, Nature, 179, No. 4567, 957 (1957).ADSCrossRefGoogle Scholar
  14. 14.
    G. G. Knyazev, Neurosci. Biobehav. Rev., 36, No. 1, 677 (2012).CrossRefGoogle Scholar
  15. 15.
    L. Bernardi, A. Radaelli, P. L. Solda, et al., Clin. Sci., 90, No. 5, 345 (1996).CrossRefGoogle Scholar
  16. 16.
    C. Julien, Cardiovasc. Res., 70, No. 1, 12 (2006).CrossRefGoogle Scholar
  17. 17.
    R. M. Baevsky, G. G. Ivanov, L. V. Chireikin, et al., Vest. Aritmol., 24, 65 (2001).Google Scholar
  18. 18.
    R. M. Baevsky, Klinich. Informat. Telemed., 1, No. 1, 54 (2004).Google Scholar
  19. 19.
    A. A. Koronovskii and A. E. Hramov, Continuous Wavelet Analysis and its Applications [in Russian], Fizmatlit, Moscow (2003).Google Scholar
  20. 20.
    Q. Quiroga, A. Kraskov, T. Kreuz, and P. Grassberger, Phys. Rev. E, 65, No. 4, 041903 (2002).ADSCrossRefGoogle Scholar
  21. 21.
    T. Schreiber and A. Schmitz, Phys. Rev. Lett., 77, No. 4, 635 (1996).ADSCrossRefGoogle Scholar
  22. 22.
    F. Mormann, K. Lehnertz, P. David, and C. E. Elger, Physica D, 144, Nos. 3–4, 358 (2000).ADSCrossRefGoogle Scholar
  23. 23.
    J. Brea, D. F. Russell, and A. B. Neiman, Chaos, 16, No. 2, 026111 (2006).ADSCrossRefGoogle Scholar
  24. 24.
    C. Schafer, M. G. Rosenblum, H. H. Abel, and J. Kurths, Phys. Rev. E, 60, No. 1, 857 (1999).ADSCrossRefGoogle Scholar
  25. 25.
    J. T. Ottesen, Math. Comp. Model., 31, Nos. 4–5, 167 (2000).CrossRefGoogle Scholar
  26. 26.
    M. Ursino, Am. J. Physiol., 275, No. 5, H1733 (1998).Google Scholar
  27. 27.
    R. W. de Boer, J. M. Karemaker, and J. Strackee, Am. J. Physiol., 253, No. 3, H680 (1987).Google Scholar
  28. 28.
    A. S. Karavaev, J. M. Ishbulatov, V. I. Ponomarenko, et al., J. Am. Soc. Hypertens., 10, No. 3, 235 (2016).CrossRefGoogle Scholar
  29. 29.
    B. C. Lacey and J. I. Lacey, Am. Psychol., 33, 99 (1978).CrossRefGoogle Scholar
  30. 30.
    M. Lambertz and P. Langhorst, J. Auton. Nerv. Syst., 68, Nos. 1–2, 58 (1998).CrossRefGoogle Scholar
  31. 31.
    R. Vandenhouten, M. Lambertz, P. Langhorst, and R. Grebe, IEEE Trans. Biomed. Eng., 47, No. 6, 729 (2000).CrossRefGoogle Scholar
  32. 32.
    A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: a Universal Concept in Nonlinear Sciences, Cambridge Univ. Press, New York (2001).CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. S. Karavaev
    • 1
    • 2
    Email author
  • E. I. Borovkova
    • 1
    • 2
  • A. E. Runnova
    • 3
  • A. R. Kiselev
    • 2
    • 4
  • M. O. Zhuravlev
    • 2
    • 3
  • V. I. Ponomarenko
    • 1
    • 2
  • M. D. Prokhorov
    • 1
  • A. A. Koronovskii
    • 2
  • A. E. Hramov
    • 3
  1. 1.Saratov Branch of V. A. Kotel’nikov Institute of Radioengineering and Electronics of the Russian Academy of SciencesSaratovRussia
  2. 2.N. G. Chernyshevsky Saratov National Research State UniversitySaratovRussia
  3. 3.Yu. A. Gagarin Saratov State Technical UniversitySaratovRussia
  4. 4.V. I. Razumovsky Saratov State Medical UniversitySaratovRussia

Personalised recommendations