Advertisement

Radiophysics and Quantum Electronics

, Volume 61, Issue 8–9, pp 589–602 | Cite as

Influence of Surface Properties on Axisymmetric Oscillations of an Oblate Drop in an Alternating Electric Field

  • A. A. Alabuzhev
  • M. A. Kashina
Article
  • 17 Downloads

We consider oscillations of a clamped liquid drop in an alternating electric field. The frequencies and damping rates of the drop eigenmodes are studied as functions of the problem parameters. The fundamental frequency of free oscillations can vanish in a certain interval of values of the Hocking parameter. The length of this interval depends on the ratio of the drop dimensions. Frequencies of other drop eigenmodes decrease monotonically with increasing Hocking parameter. Well-pronounced resonance effects are observed when studying forced oscillations. For any unequal values of the Hocking parameter, the amplitude of oscillations of the side surface is always finite. However, for identical Hocking parameters, the amplitude increases indefinitely in the case of low dissipation. It is shown that traveling capillary waves propagate on the side surface of the drop.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Zenit and J. J. Feng, Annu. Rev. Fluid Mech., 50, 505 (2018).ADSCrossRefGoogle Scholar
  2. 2.
    A. Prosperetti, Annu. Rev. Fluid Mech., 49, 221 (2017).ADSCrossRefGoogle Scholar
  3. 3.
    V. S. Ajaev and G. M. Homsy, Annu. Rev. Fluid Mech., 38, 277 (2006).ADSCrossRefGoogle Scholar
  4. 4.
    I. S. Fayzrakhmanova and A. V. Straube, Phys. Fluids, 21, 072104 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    S. Shklyaev and A. V. Straube, Phys. Rev. E, 81, 016321 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    L. S. Klimenko and D. V. Lyubimov, Microgravity Sci. Technol., 30, 77 (2018).ADSCrossRefGoogle Scholar
  7. 7.
    V. A. Saranin, Tech. Phys., 58, No. 4, 471 (2013).CrossRefGoogle Scholar
  8. 8.
    S. M. Korobeynikov, A. G. Ovsyannikov, A. V. Ridel, and D. A. Medvedev, J. Phys. Conf. Ser., 899, 082003 (2017).CrossRefGoogle Scholar
  9. 9.
    S. Mandal and S. Chakrabortya, Phys. Fluids, 29, 072109 (2017).ADSCrossRefGoogle Scholar
  10. 10.
    G. S. Bordonsky, A. O. Orlov, and K. A. Schegrina, Radiophys. Quantum Electron., 59, No. 10, 812 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    N. A. Denisova and A. V. Rezvov, Radiophys. Quantum Electron., 60, No. 3, 224 (2017).ADSCrossRefGoogle Scholar
  12. 12.
    S. Shklyaev, A. V. Straube, and A. Pikovsky, Phys. Rev. E, 82, 020601 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    V. A. Demin, Fluid Dyn., 43, No. 4, 524 (2008).ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    H. A. Stone, A. D. Stroock, and A. Ajdari, Annu. Rev. Fluid Mech., 36, 381 (2004).ADSCrossRefGoogle Scholar
  15. 15.
    F. Mugele and J.-C. Baret, J. Phys. Condens. Matter, 17, 705 (2005).CrossRefGoogle Scholar
  16. 16.
    S. L. Anna, Annu. Rev. Fluid Mech., 48, 285 (2016).ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    L. Chen and E. Bonaccurso, Adv. Colloid Interface Sci., 210, 2 (2014).CrossRefGoogle Scholar
  18. 18.
    L. M. Hocking, J. Fluid Mech., 179, 253 (1987).ADSCrossRefGoogle Scholar
  19. 19.
    A. Borkar and J. Tsamopoulus, Phys. Fluids A, 3, No. 12, 2866 (1991).ADSCrossRefGoogle Scholar
  20. 20.
    A. A. Alabuzhev, Prikl. Mekh. Teor. Fiz., 57, No. 6, 53 (2016).MathSciNetGoogle Scholar
  21. 21.
    A. A. Alabuzhev and D. V. Lubimov, Prikl. Mekh. Teor. Fiz., 53, No. 1, 1 (2012).ADSGoogle Scholar
  22. 22.
    A. A. Alabuzhev and M. I. Kaysina, J. Phys. Conf. Ser., 929, 012106 (2017).CrossRefGoogle Scholar
  23. 23.
    A. A. Alabuzhev and M. A. Kashina, J. Phys. Conf. Ser., 681, 012042 (2016).CrossRefGoogle Scholar
  24. 24.
    A. A. Alabuzhev and M. A. Kashina, J. Phys. Conf. Ser., 894, 012003 (2017).CrossRefGoogle Scholar
  25. 25.
    J. W. Miles, J. Fluid Mech., 222, 197 (1991).ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    A. A. Alabuzhev, J. Phys. Conf. Ser., 894, 012002 (2017).CrossRefGoogle Scholar
  27. 27.
    A. A. Alabuzhev, Microgravity Sci. Technol., 30, Nos. 1–2, 25 (2018).ADSCrossRefGoogle Scholar
  28. 28.
    M. A. Kashina and A. A. Alabuzhev, Microgravity Sci. Technol., 30, Nos. 1–2, 11 (2018).ADSCrossRefGoogle Scholar
  29. 29.
    A. A. Alabuzhev and D. V. Lubimov, Prikl. Mekh. Teor. Fiz., 48, No. 5, 78 (2007).Google Scholar
  30. 30.
    I. S. Fayzrakhmanova, A. V. Straube, and S. Shklyaev, Phys. Fluids, 23, 102105 (2011).ADSCrossRefGoogle Scholar
  31. 31.
    A. A. Alabuzhev, Vych. Mech. Sploshn. Sred, 9, No. 3, 316 (2016).Google Scholar
  32. 32.
    Lord Rayleigh, Philos. Mag., Ser. 5, 34, No. 207, 177 (1892).CrossRefGoogle Scholar
  33. 33.
    J. A. F. Plateau, Annu. Rep. Board Regents Smithson. Inst., 270 (1863).Google Scholar
  34. 34.
    L. D. Landau and E. M. Lifshitz, Statistical Physics, P. 1, Pergamon Press, Oxford (1980).zbMATHGoogle Scholar
  35. 35.
    M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials, Oxford Univ. Press, Oxford (2001).CrossRefGoogle Scholar
  36. 36.
    I. S. Rez and Yu. M. Poplavko, Dielectrics: Basic Properties and Applications in Electronics [in Russian], Radio i Svyaz’, Moscow (1989).Google Scholar
  37. 37.
    G. M. Fichtenholtz, Differential and Integral Calculus, Vol. 3 [in Russian], Fizmatlit, Moscow (2008).Google Scholar
  38. 38.
    V. F. Vlasov, A Course in Radio Engineering [in Russian], Gos’energoizdat, Moscow (1962).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. A. Alabuzhev
    • 1
    • 2
  • M. A. Kashina
    • 1
    • 2
  1. 1.Institute of Continuous Media Mechanics of the Ural Branch of the Russian Academy of SciencesPermRussia
  2. 2.Perm State National Research UniversityPermRussia

Personalised recommendations