Advertisement

Radiophysics and Quantum Electronics

, Volume 61, Issue 8–9, pp 563–573 | Cite as

Modeling of Electrical Parameters of Thunderstorms Including Turbulent Effects

  • S. O. Dementyeva
  • E. A. MareevEmail author
Article
  • 11 Downloads

We study the effects of turbulence on the electrification of thunderclouds. Analytical estimates of the disturbances of electrical parameters (in particular, charging current) stipulated by turbulent effects are performed for different parameters of turbulence and hydrometeors. The obtained results are used to improve the parameterization of electrical processes. A detailed comparison of the results of numerical simulation of thunderstorm events with and without taking into account turbulent effects revealed some characteristic features in the change of the electric parameter distributions in a thundercloud. Various scenarios of the electric parameter variations due to taking into account a high level of turbulence in thunderclouds are found and analyzed. They are (i) general intensification of the electrical processes without any significant change in the structure of the electrically active areas; (ii) an increase in the electric potential near the maximum values with the simultaneous decrease in potentials at the periphery; (iii) an increase in the electric potential with the coalescence of nearby areas of the maximum values of the potential.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. P. Kuettner, Z. Levin, and J. D. Sartor, J. Atmos. Sci., 38, No. 11, 2470 (1981).ADSCrossRefGoogle Scholar
  2. 2.
    E. R. Mansell, D. R. MacGorman, C. L. Ziegler, and J. M. Straka, J. Geophys. Res., 110, No. D12, D12101 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    E. R. Mansell and C. L. Ziegler, J. Atmos. Sci., 70, No. 7, 2032 (2013).ADSCrossRefGoogle Scholar
  4. 4.
    S. O. Dementyeva, N. V. Ilyin, and E. A. Mareev, Izv. Rossiisk. Akad. Nauk, Fiz. Atm. Okeana, 51, No 2, 186 (2015).Google Scholar
  5. 5.
    M. V. Shatalina, S. O. Dementyeva, and E. A. Mareev, Meteorol. Gidrol ., No 11, 81 (2016).Google Scholar
  6. 6.
    S. V. Anisimov, E. A. Mareev, N. M. Shikhova, and E. M. Dmitriev, Geophys. Res. Lett., 29, No. 24, 70 (2002).CrossRefGoogle Scholar
  7. 7.
    S. V. Anisimov, E. A. Mareev, N. M. Shikhova, et al., Atmos. Res., 76, Nos. 1–4, 16 (2015).Google Scholar
  8. 8.
    E. A. Mareev and S. O. Dementyeva, J. Geophys. Res. A, 122, No. 13, 6976 (2017).Google Scholar
  9. 9.
    H. R. Pruppaher and J. D. Klett, Microphysics of Clouds and Precipitation, Kluwer Academic Publ., New York (1997).Google Scholar
  10. 10.
    C. Saunders, Space Sci. Rev., 137, Nos. 1–4, 335 (2008).ADSCrossRefGoogle Scholar
  11. 11.
    K. C. Mathpal, N. C. Varshneya, and D. Narsingh, Rev. Geophys., 18, No. 2, 361 (1980).ADSCrossRefGoogle Scholar
  12. 12.
    T. Takahashi, J. Atmos. Sci., 35, No. 8, 1536 (1978).ADSCrossRefGoogle Scholar
  13. 13.
    C. P. R. Saunders, W. D. Keith, and R. P. Mitzeva, J. Geophys. Res., 96, No. D6, 11007 (1991).ADSCrossRefGoogle Scholar
  14. 14.
    H. Volland, Atmospheric Electrodynamics, Springer, Berlin (1985).Google Scholar
  15. 15.
    I. P. Mazin, V. I. Silaev, and M. A. Strunin, Izv. Akad. Nauk SSSR, Fiz. Atm. Okeana, 20, No 1, 10 (1984).Google Scholar
  16. 16.
    I. P. Mazin, A. Kh. Khrgian, and I. M. Imyanitov, Clouds and Cloudy Atmosphere, a handbook [in Russian], Gidrometeoizdat, Leningrad (1989).Google Scholar
  17. 17.
    B. Ackerman, J. Appl. Meteorology, 6, No. 1, 61 (1967).ADSCrossRefGoogle Scholar
  18. 18.
    S. Panchev, Random Fluctuations and Turbulence, Pergamon, Oxford (1971).zbMATHGoogle Scholar
  19. 19.
    J. C. Weil, R. P. Lawson, and A. R. Rodi, J. Appl. Meteorology, 32, 1055 (1989).ADSCrossRefGoogle Scholar
  20. 20.
    G. B. Brylev, S. B. Gashina, and G. L. Nizdoiminoga, Radar Characteristics of Clouds and Precipitation [in Russian], Gidrometeoizdat, Leningrad (1986).Google Scholar
  21. 21.
  22. 22.
    M. G. Bateman, W. D. Rust, B. F. Smull, and T. C. Marshall, J. Geophys. Res., 100, No. D8, 16341 (1995).ADSCrossRefGoogle Scholar
  23. 23.
    T. C. Marshall, W. D. Rust, W. P. Winn, and K. E. Gilbert, J. Geophys. Res., 94, No. D2, 2171 (1989).ADSCrossRefGoogle Scholar
  24. 24.
    M. Stolzenburg, T. C. Marshall, and P. R. Krehbiel, J. Geophys. Res., 120, No. 21, 11253 (2015).Google Scholar
  25. 25.
    S. O. Dementyeva and E. A. Mareev, Izv. Atmos. Oceanic Phys., 54, No. 1, 25 (2018).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations