Advertisement

Radiophysics and Quantum Electronics

, Volume 61, Issue 7, pp 528–535 | Cite as

Estimation of Loss When Detecting Signals by a Receiver with Adaptive Threshold on the Basis of the Method of Ordered Statistics

  • I.Ya. Orlov
  • E.S. Fitasov
Article
  • 6 Downloads

We consider the method of formation of adaptive threshold of signal detection against the background of receiver inherent noise using the nonparametric algorithms on the basis of ordered statistics. The simulation results and the efficiency of using this method on the basis of estimating the quantiles of the statistical distribution of the process compared with the classical methods of “moving average” in the case of complicated signal-interference environment (weak-signal masking by intense interference, mutual masking of several signals simultaneously staying in the sliding data window, and the useful-signal presence in the region of the jump-like variation of interference) are shown. A mathematical model of estimating the loss introduced when detecting a useful signal by the threshold device based on the method of ordered statistics is developed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. R. Levin, Theoretical Fundamentals of Statistical Radioengineering, Vol. 1 [in Russian], Sovetskoe Radio, Moscow (1974).Google Scholar
  2. 2.
    Ya.D. Shirman and V.N.Manzhos, Theory and Methods for Processing Radar Information against an Interference Background [in Russian], Radio i Svyaz’, Moscow (1981).Google Scholar
  3. 3.
    P. V. Mikheev, Radiophys. Quantum Electron., 49, No. 7, 564 (2006).ADSCrossRefGoogle Scholar
  4. 4.
    I.Ya.Orlov and V.E.Tsvetkov, Radiophys. Quantum Electron., 43, No. 7, 600 (2000).Google Scholar
  5. 5.
    O. V. Bolkhovskaya, A.A.Mal’tsev, and K.V.Rodyushkin, Radiophys. Quantum Electron., 47, No. 8, 621 (2004).Google Scholar
  6. 6.
    S. N. Zhiganov and V.V.Kostrov, Radiotekhnika, No. 6, 111 (2006).Google Scholar
  7. 7.
    P. A. Bakulev, Yu.A.Basistov, and V.G.Tugushi, Izv. Vyssh. Uchebn. Zaved., Radio´elektron., 32, No. 4, 4 (1989).Google Scholar
  8. 8.
    H. Rohling, IEEE Trans. Aerosp. Electron. Syst. ( AES-19), No. 4, 601 (1983).Google Scholar
  9. 9.
    V. V. Vitollo and D.N.Dmitrienko, Radiotekhnika, No. 11, 66 (1986).Google Scholar
  10. 10.
    A.Ya. Boyarsky, Introduction into the Theory of Ordered Statistics [in Russian], Statistika, Moscow (1970).Google Scholar
  11. 11.
    V. V. Nasonov, E. S. Fitasov, and E. S.Khmylov, Vestnik Yaroslavl Gosuniv. Ser. Est. Tekhn. Nauki, No. 3, 33 (2013).Google Scholar
  12. 12.
    B. R. Levin, Theoretical Fundamentals of Statistical Radioengineering [in Russian], Sovetskoe Radio, Moscow (1976).Google Scholar
  13. 13.
    V. I.Tikhonov, Nonlinear Transformations of Random Processes [in Russian], Radio i Svyaz’, Moscow (1986).Google Scholar
  14. 14.
    E. S. Fitasov, Proekt. Tekhnol. ´ Elektron. Sredstv, No. 1, 16 (2017).Google Scholar
  15. 15.
    E. S. Fitasov, Vestn. Povolzh. Gos. Tekhnol. Univer. Ser. Radiiotekhn. Infokommun. Sist., No. 1 (33), 18 (2017).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.N. I. Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia

Personalised recommendations