Advertisement

Radiophysics and Quantum Electronics

, Volume 61, Issue 3, pp 216–231 | Cite as

Two-Frequency Undulators for Generation of X-Ray Radiation in Free-Electron Lasers

  • K. V. Zhukovsky
  • I. A. Potapov
  • A. M. Kalitenko
Article
  • 8 Downloads

We present a theoretical study and a computer simulation of characteristics of the undulator radiation in single-pass free-electron lasers (FELs). Using a phenomenological model describing the dynamics of the radiated power in FELs with allowance for the basic loss, we study generation of harmonics in the X-ray range in a FEL with a two-frequency undulator. We study the possibility to achieve a hundredfold increase in the radiation intensity of the nth harmonic in a FEL, in which the electron-phase shift by /n with respect to photons occurs between undulator sections, where k = 2, 4, . . . . The advantages of using a two-frequency undulator in a single-pass FEL and the possibility of generating the high-power X-ray radiation by the FEL at the harmonic wavelengths 2.3–3.3 nm in the linear regime are demonstrated. The FEL is compared with the two-frequency undulator and the conventional plane undulator. Additionally, generation of radiation having a power of tens of megawatts is studied at the wavelength λ ≈ 3.27 nm in a multistage FEL with a length of 40 m, an off-the-shelf excimer ultraviolet seed laser, which operates at a wavelength of 157 nm, and an electron beam having an energy of about 0.6 GeV.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. G. Bagrov, G. S. Bisnovatiy-Kogan, and V. A. Bordovitsyn, Theory of Radiation of Relativistic Particles [in Russian], Fizmatlit, Moscow (2002).Google Scholar
  2. 2.
    V. G. Bagrov, I. M. Ternov, and B. V. Kholomai, Radiation of Relativistic Electrons in the Longitudinal Periodic Electric Field of a Crystal [in Russian], Tomsk Research Center of the Siberian Branch of the USSR Academy of Sciences, Tomsk (1987).Google Scholar
  3. 3.
    G. Margaritondo, Synchrotron Radiation: Basics, Methods and Applications, Springer, Berlin (2015), p. 29.Google Scholar
  4. 4.
    V. L. Ginzburg, Izv. Akad. Nauk SSSR., Fiz., 11, 1651 (1947).Google Scholar
  5. 5.
    H. Motz, W. Thon, and R. N. J. Whitehurst, Appl. Phys., 24, 826 (1953).CrossRefGoogle Scholar
  6. 6.
    L. A. Artsimovich and I. Ya. Pomeranchuk, Zh. Éksp. Teor. Fiz., 16, 379 (1946).Google Scholar
  7. 7.
    I. M. Ternov, V. V. Mikhailin, and V. R. Khalilov, Synchrotron Radiation and its Application [in Russian], Moscow State Univ., Moscow (1980).Google Scholar
  8. 8.
    D. F. Alferov, Yu. A. Bashmakov, and E.G. Bessonov, Zh. Tekh. Fiz., 43, No. 10, 2126 (1973).Google Scholar
  9. 9.
    D. F. Alferov, Yu. A. Bashmakov, and P. A. Cherenkov, Sov. Physics—Uspekhi, 32, No. 3, 200 (1989).ADSCrossRefGoogle Scholar
  10. 10.
    V. I. Alexeev and E.G. Bessonov, Nucl. Instrum. Meth. A, 30, 140 (1991).ADSGoogle Scholar
  11. 11.
    E. G. Bessonov, Quantum Electron., 16, No. 8, 1056 (1986).ADSGoogle Scholar
  12. 12.
    E. G. Bessonov, Nucl. Instrum. Meth. A, 282, 405 (1989).ADSCrossRefGoogle Scholar
  13. 13.
    E. G. Bessonov, Nucl Instrum. Meth. A, 282, 442 (1989).ADSCrossRefGoogle Scholar
  14. 14.
    B. W. J. McNeil and N. R. Thompson, Nature Photon., 4, 814 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    C. Pellegrini, A. Marinelli, and S. Reiche, Rev. Mod. Phys., 88, 015006 (2016).ADSCrossRefGoogle Scholar
  16. 16.
    Z. Huang and K. J. Kim, Phys. Rev. ST Accel. Beams, 10, 034801 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    E. L. Saldin, E.A. Schneidmiller, and M. V. Yurkov, The Physics of Free Electron Lasers, Springer, Berlin (2000).CrossRefGoogle Scholar
  18. 18.
    R. Bonifacio, C. Pellegrini, and L. Narducci, Opt. Commun., 50, 373 (1984).ADSCrossRefGoogle Scholar
  19. 19.
    P. Schmüser, M. Dohlus, J. Rossbach, and C. Behrens, Free-Electron Lasers in the Ultraviolet and X-Ray Regime, Springer, Cham (2014).CrossRefGoogle Scholar
  20. 20.
    C. Pellegrini, Phys. Scr., 91, 014004 (2016).CrossRefGoogle Scholar
  21. 21.
    J. M. J. Madey, J. Appl. Phys., 42, 1906 (1971).ADSCrossRefGoogle Scholar
  22. 22.
    L. R. Elias, W. M. Fairbank, J. M. Madey, et al., Phys. Rev. Lett., 36, No. 13, 717 (1976).ADSCrossRefGoogle Scholar
  23. 23.
    D. A. Deacon, L. R. Elias, J. M. Madey, et al., Phys. Rev. Lett., 38, No. 16, 892 (1977).ADSCrossRefGoogle Scholar
  24. 24.
    N. M. Kroll and W. A. McMullin, Phys. Rev. A, 17, No. 1, 300 (1978).ADSCrossRefGoogle Scholar
  25. 25.
    W. B. Colson, Nucl. Instrum. Meth. A, 393, 82 (1997).ADSCrossRefGoogle Scholar
  26. 26.
    P. Sprangle and R. A. Smith, Phys. Rev. A, 21, No. 1, 293 (1980).ADSCrossRefGoogle Scholar
  27. 27.
    K. J. Kim and M. Xie, Nucl. Instrum. Meth. A, 331, 359 (1993).ADSCrossRefGoogle Scholar
  28. 28.
    L.-H. Yu, M. Babzien, I. Ben-Zvi, et al., Science, 289, 932 (2000).ADSCrossRefGoogle Scholar
  29. 29.
    L.-H. Yu, Phys. Rev. A, 44, 5178 (1991).ADSCrossRefGoogle Scholar
  30. 30.
    E. L. Saldin, E.A. Schneidmiller, and M. V. Yurkov, Opt. Commun., 202, 169 (2002).ADSCrossRefGoogle Scholar
  31. 31.
    T. Shaftan and L.-H. Yu, Phys. Rev. E, 71, 046501 (2005).ADSCrossRefGoogle Scholar
  32. 32.
    H.-T. Li and Q.-K. Jia, Chin. Phys. C, 37, No. 2, 028102 (2013).ADSCrossRefGoogle Scholar
  33. 33.
    H.-X. Deng and Z.-M. Dai, Chin. Phys. C, 37, No. 10, 102001 (2013).ADSCrossRefGoogle Scholar
  34. 34.
    H.-X. Deng and Z.-M. Dai, Chin. Phys. C, 34, No. 8, 1140 (2010).ADSCrossRefGoogle Scholar
  35. 35.
    L. Zeng, W. Qin, and G. Zhao, Chin. Phys. C, 40, No. 9. 098102 (2016).ADSCrossRefGoogle Scholar
  36. 36.
    K. B. Zhukovsky, Moscow Univ. Phys. Bull., 70, No. 4, 232 (2015).ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    K. V. Zhukovsky, J. Electromagn. Waves Appl., 29, No. 1, 132 (2015).CrossRefGoogle Scholar
  38. 38.
    K. Zhukovsky, J. Electromagn. Waves Appl., 28, No. 15, 1869 (2014).CrossRefGoogle Scholar
  39. 39.
    K. Zhukovsky, Laser Part. Beams, 34, 447 (2016).ADSCrossRefGoogle Scholar
  40. 40.
    G. Mishra, M. Gehlot, and J.-K. Hussain, Nucl. Instrum. A, 603, 495 (2009).ADSCrossRefGoogle Scholar
  41. 41.
    G. Dattoli, V. V. Mikhailin, P. L. Ottaviani, and K. Zhukovsky, J. Appl. Phys., 100, 084507 (2006).ADSCrossRefGoogle Scholar
  42. 42.
    G. Dattoli, N. S. Mirian, E. Di Palma, and V. Petrillo, Phys. Rev. ST Accel. Beams, 17, 050702 (2014).Google Scholar
  43. 43.
    A. V. Savilov and G. S. Nusinovich, Phys. Plasmas, 14, 053113 (2007).ADSCrossRefGoogle Scholar
  44. 44.
    G. S. Nusinovich and O. Dumbrajs, Phys. Plasmas, 2, 568 (1995).ADSCrossRefGoogle Scholar
  45. 45.
    A. V. Savilov and G. S. Nusinovich, Phys. Plasmas, 5, 013112 (2008).ADSCrossRefGoogle Scholar
  46. 46.
    T. Shintake, Nature Photon., 2, 555 (2008).CrossRefGoogle Scholar
  47. 47.
    L.-H. Yu, L. Di Mauro, A. Doyuran, et al., Phys. Rev. Lett., 91, 074801 (2003).ADSCrossRefGoogle Scholar
  48. 48.
    B. McNeil, Nature Photon., 2, 522 (2008).ADSCrossRefGoogle Scholar
  49. 49.
    K. Tiedtke, A. Azima, N. von Bargen, et al., New J. Phys., 11, 023029 (2009).ADSCrossRefGoogle Scholar
  50. 50.
    E. A. Seddon, J. A. Clarke, D. J. Dunning, et al., Rep. Prog. Phys., 80, 115901 (2017).ADSCrossRefGoogle Scholar
  51. 51.
    E. L. Saldin, E. A. Schneidmiller, M. V. Yurkov, et al., New J. Phys., 12, 035010 (2010).ADSCrossRefGoogle Scholar
  52. 52.
    M. Quattromini, M. Artioli, E. Di Palma, et al., Phys. Rev. ST Accel. Beams, 15, 080704 (2012).ADSCrossRefGoogle Scholar
  53. 53.
    R. P. Walker, Nucl. Instrum. Meth. A, 335, 328 (1993).ADSCrossRefGoogle Scholar
  54. 54.
    N. A. Vinokurov and E. B. Levichev, Physics—Uspekhi, 58, No. 9, 850 (2015).ADSCrossRefGoogle Scholar
  55. 55.
    H. Onuki and P. Elleaume, Undulators, Wigglers and their Applications, Taylor & Francis, New York (2003).CrossRefGoogle Scholar
  56. 56.
    G. Dattoli, J. Appl. Phys., 84, No. 5, 2393 (1998).ADSCrossRefGoogle Scholar
  57. 57.
    G. Dattoli and P. L. Ottaviani, Opt. Commun., 204, No. 1, 283 (2002).ADSCrossRefGoogle Scholar
  58. 58.
    G. Dattoli, P. L. Ottaviani, and A. Renieri, Laser Part. Beams, 23, 303 (2005).ADSCrossRefGoogle Scholar
  59. 59.
    G. Dattoli, P. L. Ottaviani and S. Pagnutti, J. Appl. Phys., 97, 113102 (2005).ADSCrossRefGoogle Scholar
  60. 60.
    G. Dattoli, L. Giannessi, P. L. Ottaviani, and C. Ronsivalle, J. Appl. Phys., 95, 3206 (2004).ADSCrossRefGoogle Scholar
  61. 61.
    K. Zhukovsky, Nucl. Instrum. Meth. Phys. Res. B, 369, 9 (2016).ADSCrossRefGoogle Scholar
  62. 62.
    K. Zhukovsky, Opt. Commun., 353, 35 (2015).ADSCrossRefGoogle Scholar
  63. 63.
    K. Zhukovsky and I. Potapov, Laser Part. Beams, 35, 326 (2017).ADSCrossRefGoogle Scholar
  64. 64.
    L. Giannessi, D. Alesini, P. Antici, et al., Phys. Rev. ST Accel. Beams, 14, 060712 (2011).ADSCrossRefGoogle Scholar
  65. 65.
    F. de Martini, in: Laser Handbook, Vol. 6, North-Holland, Amsterdam (1990), p. 195.Google Scholar
  66. 66.
    R. Bonifacio, L. de Salvo, and P. Pierini, Nucl. Instrum. Meth. Phys. Res. A, 293, 627 (1990).ADSCrossRefGoogle Scholar
  67. 67.
    Z. Huang and K.-J. Kim, Phys. Rev. E, 62, 7295 (2000).ADSCrossRefGoogle Scholar
  68. 68.
    K. Zhukovsky, Europhys. Lett., 119, 34002 (2017).ADSCrossRefGoogle Scholar
  69. 69.
    K. V. Zhukovsky, Russ. Phys. J., 60, No. 9, 1630 (2018).CrossRefGoogle Scholar
  70. 70.
    K. Zhukovsky, Opt. Commun., 418, 57 (2018).ADSCrossRefGoogle Scholar
  71. 71.
    K. V. Zhukovsky, Russ. Phys. J., 61, No. 2, 278 (2018).CrossRefGoogle Scholar
  72. 72.
    K. Zhukovsky, J. Phys. D: Appl. Phys., 50, 505601 (2017).CrossRefGoogle Scholar
  73. 73.
    K. Zhukovsky, J. Appl. Phys., 122, No. 23, 233103 (2017).ADSCrossRefGoogle Scholar
  74. 74.
    B. W. J. McNeil, G. R. M. Robb, M. W. Poole, and N. R. Thompson, Phys. Rev. Lett., 96, 084801 (2006).ADSCrossRefGoogle Scholar
  75. 75.
    E. A. Schneidmiller and M. V. Yurkov, Phys. Rev. ST Accel. Beams, 15, 080702 (2012).ADSCrossRefGoogle Scholar
  76. 76.
    S. C. Bajt and M. A. Wall, Patent Application No. EP 1198725 A1 USA, PCT No. PCT/US2000/013549.Google Scholar
  77. 77.
    K. V. Zhukovsky, Moscow Univ. Phys. Bull., 72, No. 2, 128 (2017).ADSCrossRefGoogle Scholar
  78. 78.
    V. N. Korchuganov, N. Yu. Svechnikov, N. V. Smolyakov, and S. I. Tomin, J. Surface Investig. X-Ray Synch. Neutron Tech., 4, No. 6, 891 (2010).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • K. V. Zhukovsky
    • 1
  • I. A. Potapov
    • 1
  • A. M. Kalitenko
    • 1
  1. 1.M. V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations