Advertisement

Extended arithmetic functions

  • Fethi BouzeffourEmail author
  • Wissem Jedidi
  • Mubariz Garayev
Article
  • 14 Downloads

Abstract

In this paper, we give an attempt to extend some arithmetic properties such as multiplicativity and convolution products to the setting of operator theory and we provide significant examples which are of interest in number theory. We also give a representation of the Euler differential operator by means of the Euler totient arithmetic function and idempotent elements of some associative unital algebra.

Keywords

Arithmetic functions Convolution product Idempotent 

Mathematics Subject Classification

11A25 16U99 

Notes

Acknowledgements

The authors would like to thank the referee for his valuable comments which helped to improve the paper.

References

  1. 1.
    Apostol, T.M.: Introduction to Analytic Number Theory. Springer, New York (1976)zbMATHGoogle Scholar
  2. 2.
    Buschman, R.G.: lcm-products of number-theoretic functions revisited. Kyungpook Math. J. 39, 159–159 (1999)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Cohen, E.: Representations of even functions (mod \(r\)). II. Cauchy products. Duke Math. J. 26, 165–182 (1959)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Cohen, E.: Arithmetical functions associated with the unitary divisors of an integer. Math. Z. 74, 66–80 (1960)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    McCarthy, P.J.: Introduction to Arithmetical Functions. Universitext. Springer, New York (1986)CrossRefGoogle Scholar
  6. 6.
    Niven, I., Zuckerman, H.S., Montgomery, H.L.: An Introduction to the Theory of Numbers., 5th edn. Wiley, New York (1991)zbMATHGoogle Scholar
  7. 7.
    Ramanujan, S.: On certain trigonometrical sums and their applications in the theory of numbers. Trans. Camb. Philos. Soc. 22, 259–276 (1918)Google Scholar
  8. 8.
    Lehmer, D.H.: On a theorem of von Sterneck. Bull. Am. Math. Soc. 37, 723–726 (1931)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Rudin, W.: Functional Analysis. McGraw–Hill, New York (1991)zbMATHGoogle Scholar
  10. 10.
    Tóth, L., Haukkanen, P.: The discrete Fourier transform of \(r\)-even functions. Acta Univ. Sapientiae Math. 3, 5–25 (2011)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Tóth, L.: Multiplicative arithmetic functions of several variables: a survey. In: Rassias, T., Pardalos, P. (eds.) Mathematics Without Boundaries, pp. 483–514. Springer, New York (2014)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Fethi Bouzeffour
    • 1
    • 2
    Email author
  • Wissem Jedidi
    • 3
    • 4
  • Mubariz Garayev
    • 1
  1. 1.Department of Mathematics, College of SciencesKing Saud UniversityRiyadhSaudi Arabia
  2. 2.University of CarthageJarzounaTunisia
  3. 3.Department of Statistics & ORKing Saud UniversityRiyadhSaudi Arabia
  4. 4.Université de Tunis El Manar, Faculté des Sciences de Tunis, LR11ES11 Laboratoire d’Analyse Mathématiques et ApplicationsTunisTunisia

Personalised recommendations