Advertisement

On exponential and trigonometric functions on nonuniform lattices

  • M. Kenfack Nangho
  • M. Foupouagnigni
  • W. KoepfEmail author
Article
  • 9 Downloads

Abstract

We develop analogs of exponential and trigonometric functions (including the basic exponential function) and derive their fundamental properties: addition formula, positivity, reciprocal and fundamental relations of trigonometry. We also establish a binomial theorem, characterize symmetric orthogonal polynomials and provide a formula for computing the nth-derivatives for analytic functions on nonuniform lattices (q-quadratic and quadratic variables).

Keywords

Basic exponential function Askey–Wilson polynomials Symmetric functions and nonuniform lattices 

Mathematics Subject Classification

33D15 39D45 

Notes

Acknowledgements

The authors thank the anonymous referees for their fruitful comments and careful checking of proofs that resulted in an improvement of our paper.

References

  1. 1.
    Askey, R., Atakishiyev, N.M., Suslov, S.K.: An Analog of Fourier Transform for \(q\)-Harmonic Oscillators. Symmetries in Science VI, pp. 57–63. Springer, New York (1993)zbMATHGoogle Scholar
  2. 2.
    Askey, R., Rahman, M., Suslov, S.K.: On a general \(q\)-Fourier transformation with nonsymmetric kernels. J. Comput. Appl. Math. 68, 25–55 (1996)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Area, I., Ronveaux, A., Godoy, E., Zarzo, A.: Classical symmetric orthogonal polynomials of a discrete variable. Integral Transforms Spec. Funct. 15, 1–12 (2004)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Askey, R., Wilson, J.: Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Am. Math. Soc. 54 (1985)Google Scholar
  5. 5.
    Atakishiyev, N.M., Wolf, K.B.: Fractional Fourier Kravchuk transform. J. Opt. Soc. Am. A 14, 1467–1477 (1997)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Atakishiyev, N.M., Rahman, M., Suslov, S.K.: On classical orthogonal polynomials. Constr. Approx. 11(2), 181–226 (1995)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Foupouagnigni, M.: On difference equations for orthogonal polynomials on nonuniform lattices. J. Differ. Eqn. Appl. 14, 127–174 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Foupouagnigni, M., Kenfack-Nangho, M., Mboutngam, S.: Characterization theorem of classical orthogonal polynomials on non-uniform lattices: the functional approach. Integral Transforms Spec. Funct. 22(10), 739–758 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Foupouagnigni, M., Koepf, W., Kenfack-Nangho, M., Mboutngam, S.: On solutions of holonomic divided-difference equations on non-uniform lattices. Axioms 3, 404–434 (2013)CrossRefGoogle Scholar
  10. 10.
    Gasper, G., Rahman, M.: Basic Hypergeometric Series. Cambridge University Press, Cambridge (1990)zbMATHGoogle Scholar
  11. 11.
    Hildebrand, F.B.: Introduction to Numerical Analysis. Courier Corporation, Chelmsford (1987)zbMATHGoogle Scholar
  12. 12.
    Ismail, M.E., Zhang, R.: Diagonalization of certain integral operators. Adv. Math. 109(1), 1–33 (1994)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Jean, B.J.: Fourier: Théorie Analytique de la Chaleur. F. Didot, Paris (1822)Google Scholar
  14. 14.
    Kwok, Y.K.: Applied Complex Variables for Scientists and Engineers. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  15. 15.
    Monagan, M.B., Geddes, K.O., Heal, K.M., Labahn, G., Vorkoetter, S.M., McCarron, J., DeMarco, P.: Maple 9 Introductory Programming Guide. Maplesoft, Waterloo (2003)Google Scholar
  16. 16.
    Mourad, E.H.: Ismail and Dennis Stanton: \(q\)-Taylor theorems, polynomial expansions and interpolation of entire functions. J. Approx. Theory 123, 125–146 (2003)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Suslov, S.K.: The theory of difference analogues of special functions of hypergeometric type. Russ. Math. Surv. 44(2), 227–278 (1989)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Suslov, S.K.: An Introduction to Basic Fourier Series. Vol. 9 of Kluwer Series Developments in Mathematics. Springer, New York (2003)CrossRefGoogle Scholar
  19. 19.
    Weiner, N.: The Fourier Integral and Certain of Its Applications. Cambridge University Press, Cambridge (1933)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. Kenfack Nangho
    • 1
    • 2
  • M. Foupouagnigni
    • 3
    • 4
  • W. Koepf
    • 5
    Email author
  1. 1.Department of Mathematics and Applied MathematicsUniversity of PretoriaPretoriaSouth Africa
  2. 2.Department of Mathematics and Computer Science, Faculty of ScienceUniversity of DschangDschangCameroon
  3. 3.Department of Mathematics, Higher Teachers’ Training CollegeUniversity of Yaounde IYaoundéCameroon
  4. 4.African Institute for Mathematical SciencesLimbéCameroon
  5. 5.Institute of MathematicsUniversity of KasselKasselGermany

Personalised recommendations