Advertisement

Integer group determinants for small groups

  • Christopher PinnerEmail author
  • Christopher Smyth
Article

Abstract

For every group of order at most 14 we determine the values taken by its group determinant when its variables are integers.

Keywords

Lind–Lehmer constant Mahler measure Group determinant Dihedral group Dicyclic group Circulant determinant 

Mathematics Subject Classification

Primary 11R06 15B36 Secondary 11B83 11C08 11C20 11G50 11R09 11T22 43A40 

Notes

Acknowledgements

We are very grateful to the reviewer for reading the manuscript so carefully, and for suggesting numerous minor improvements. The second author also thanks the University of Edinburgh for the invitation to visit and the Edinburgh Mathematical Society for its financial support.

References

  1. 1.
    Apostol, T.M.: Resultants of cyclotomic polynomials. Proc. Amer. Math. Soc. 24, 457–462 (1970)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bhargava, M., Hanke, J.: Universal quadratic forms and the 290-theorem, preprintGoogle Scholar
  3. 3.
    Boerkoel, T., Pinner, C.: Minimal group determinants and the Lind-Lehmer problem for dihedral groups, to appear Acta Arith. arXiv:1802.07336
  4. 4.
    Clem, S., Pinner, C.: The Lind Lehmer constant for 3-groups. Integers 18, A40 (2018)MathSciNetGoogle Scholar
  5. 5.
    Conrad, K.: The origin of representation theory. Enseign. Math. 44(3–4), 361–392 (1998)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Cox, D.A.: Primes of the form \(x^2+ny^2\), Fermat, Class Field Theory and Complex Multiplication. Wiley, New York (1989)Google Scholar
  7. 7.
    Dasbach, O., Lalín, M.: Mahler measure under variations of the base group. Forum Math. 21, 621–637 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dickson, L.E.: Quatenary quadratic forms representing all integers. Amer. J. Math. 49, 39–56 (1927)MathSciNetCrossRefGoogle Scholar
  9. 9.
    De Silva, D., Pinner, C.: The Lind-Lehmer constant for \({\mathbb{Z}}_p^n\). Proc. Amer. Math. Soc. 142(6), 1935–1941 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    De Silva, D., Mossinghoff, M., Pigno, V., Pinner, C.: The Lind-Lehmer constant for certain \(p\)-groups. Math. Comp.  https://doi.org/10.1090/mcom/3350
  11. 11.
    Formanek, E., Sibley, D.: The group determinant determines the group. Proc. Amer. Math. Soc. 112, 649–656 (1991)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kaiblinger, N.: On the Lehmer constant of finite cyclic groups. Acta Arith. 142(1), 79–84 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kaiblinger, N.: Progress on Olga Taussky-Todd’s circulant problem. Ramanujan J. 28(1), 45–60 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lang, S.: Cyclotomic Fields I and II, Graduate Texts in Mathematics 121. Springer-Verlag, New York (1990)Google Scholar
  15. 15.
    Laquer, H.: Values of circulants with integer entries. In: Hoggatt, V.E. (ed.) A Collection of Manuscripts Related to the Fibonacci Sequence, pp. 212–217. Fibonacci Assoc., Santa Clara (1980)Google Scholar
  16. 16.
    Lehmer, D.H.: Factorization of certain cyclotomic functions. Ann. Math. 34(3), 461–479 (1933)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lehmer, E.T.: A numerical function applied to cyclotomy. Bull. Amer. Math. Soc. 36, 291–298 (1930)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Lind, D.: Lehmer’s problem for compact abelian groups. Proc. Amer. Math. Soc. 133(5), 1411–1416 (2005)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Mossinghoff, M., Pigno, V., Pinner, C.: The Lind-Lehmer constant for \({\mathbb{Z}}_2^r \times {\mathbb{Z}}_4^s\), to appear Mosc. J. Comb. Number Theory. arXiv:1805.05450
  20. 20.
    Newman, M.: On a problem suggested by Olga Taussky-Todd, Ill. J. Math. 24, 156–158 (1980)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Newman, M.: Determinants of circulants of prime power order. Linear Multilinear Algebra 9, 187–191 (1980)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Pierce, T.A.: The numerical factors of the arithmetic forms \(\prod _{i=1}^n(1\pm \alpha _i^m)\). Ann. Math. 18(2), 53–64 (1916)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Pigno, V., Pinner, C.: The Lind-Lehmer constant for cyclic groups of order less than \(892,371,480\). Ramanujan J. 33(2), 295–300 (2014)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Pinner, C., Vipismakul, W.: The Lind-Lehmer constant for \({\mathbb{Z}}_{m} \times {\mathbb{Z}}^{n}_{p}\). Integers 16, A46 (2016)zbMATHGoogle Scholar
  25. 25.
    Serre, J.-P.: Linear Representations of Finite Groups, Graduate Texts in Mathematics 42. Springer-Verlag, New York (1977)CrossRefGoogle Scholar
  26. 26.
    Vipismakul, W.: The stabilizer of the group determinant and bounds for Lehmer’s conjecture on finite abelian groups, Ph. D. Thesis, University of Texas at Austin, (2013)Google Scholar
  27. 27.
    Washington, L.: Introduction to Cyclotomic Fields, GTM 83. Springer-Verlag, New York (1982)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsKansas State UniversityManhattanUSA
  2. 2.School of Mathematics and Maxwell Institute for Mathematical SciencesUniversity of EdinburghEdinburghUK

Personalised recommendations