Advertisement

The Ramanujan Journal

, Volume 47, Issue 3, pp 651–658 | Cite as

On the duality and the derivation relations for multiple zeta values

  • Naho Kawasaki
  • Tatsushi Tanaka
Article
  • 60 Downloads

Abstract

We consider the problem of deducing the duality relation from the extended double shuffle relation for multiple zeta values. Especially we prove that the duality relation for double zeta values and that for the sum of multiple zeta values whose first components are 2’s are deduced from the derivation relation, which is known as a subclass of the extended double shuffle relation.

Keywords

Multiple zeta values Duality relation Derivation relation Extended double shuffle relation 

Mathematics Subject Classification

11M32 

Notes

Acknowledgements

The authors express great thanks to Prof. Yasuo Ohno and Prof. Masanobu Kaneko for helpful comments and advice in the MZV conference at Kinki university on Feb., 2017.

References

  1. 1.
    Granville, A.: A decomposition of Riemann’s zeta-function. Lecture Note Ser. 247, pp. 95–101. London Mathematical Society, London, Cambridge (1997)zbMATHGoogle Scholar
  2. 2.
    Hoffman, M.: Multiple harmonic series. Pac. J. Math. 152, 275–290 (1992)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Hoffman, M.: The algebra of multiple harmonic series. J. Algebra 194, 477–495 (1997)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ihara, K., Kaneko, M., Zagier, D.: Derivation and double shuffle relations for multiple zeta values. Compos. Math. 142(2), 307–338 (2006)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Kajikawa, J.: Duality and double shuffle relations of multiple zeta values. J. Number Theory 121(1), 1–6 (2006)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ohno, Y.: A generalization of the duality and sum formulas on the multiple zeta values. J. Number Theory 74, 39–43 (1999)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Tanaka, T.: On the quasi-derivation relation for multiple zeta values. J. Number Theory 129, 2021–2034 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Tanaka, T.: Algebraic interpretation of Kawashima relation for multiple zeta values and its applications. RIMS Kôkyûroku-bessatsu B 19, 117–134 (2010)zbMATHGoogle Scholar
  9. 9.
    Zagier, D.: Multiple zeta values, Unpublished manuscript, Bonn (1995)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mathematical InstituteTohoku UniversitySendaiJapan
  2. 2.Department of Mathematics, Faculty of ScienceKyoto Sangyo UniversityKyoto-CityJapan

Personalised recommendations