The Ramanujan Journal

, Volume 48, Issue 3, pp 509–543 | Cite as

Leading terms of relations for standard modules of the affine Lie algebras \(C_{n}^{(1)}\)

  • Mirko Primc
  • Tomislav ŠikićEmail author


In this paper, we give a combinatorial parametrization of leading terms of defining relations for the vacuum level k standard modules for the affine Lie algebra of type \(C_{n}^{(1)}\). Using this parametrization, we conjecture colored Rogers–Ramanujan type combinatorial identities for \(n\ge 2\) and \(k\ge 2\); the identity in the case \(n=k=1\) is equivalent to one of Capparelli’s identities.


Affine (Kac–Moody)Lie algebras Vertex operator algebras Integrable highest weight representations Combinatorial bases of standard modules Leading terms of defining relations Rogers–Ramanujan type identities 

Mathematics Subject Classification

17B67 17B69 05A19 



We thank Arne Meurman for many stimulating discussions and help in understanding the combinatorics of leading terms, and we thank Jim Lepowsky for many useful comments and suggestions. We also thank Shashank Kanade for letting us use his computer program which gave us further numerical evidence for our combinatorial conjecture.


  1. 1.
    Agarwal, A.K.: Rogers–Ramanujan identities for \(n\)-color partitions. J. Number Theory 28, 299–305 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Agarwal, A.K., Andrews, G.E.: Rogers–Ramanujan identities for partitions with \(N\) copies of \(N\). J. Comb. Theory Ser. A 45, 40–49 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Andrews, G.E.: An analytic generalization of the Rogers–Ramanujan identities for odd moduli. Proc. Natl. Acad. Sci. USA 71, 4082–4085 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Andrews, G.E.: The Theory of Partitions. Encyclopedia of Mathematics and Its Applications, vol. 2. Addison-Wesley, Boston (1976)Google Scholar
  5. 5.
    Andrews, G.E.: Schur’s theorem, Capparelli’s conjecture and the \(q\)-trinomial coefficients. In: Proceedings of the Rademacher Centenary Conference (1992), Contemporary Mathematics, vol. 167, pp. 141–154 (1994)Google Scholar
  6. 6.
    Ardonne, E., Kedem, R., Stone, M.: Fermionic characters of arbitrary highest-weight integrable \(\widehat{\mathfrak{sl}}_{r+1}\)-modules. Commun. Math. Phys. 264, 427–464 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Baranović, I., Primc, M., Trupčević, G.: Bases of Feigin–Stoyanovsky’s type subspaces for \(C_\ell ^{(1)}\). Ramanujan J. (2016). Accepted for publication
  8. 8.
    Berkovich, A., McCoy, B.M.: Rogers–Ramanujan identities: a century of progress from mathematics to physics. Doc. Math. Extra Volume ICM 1998 III, 163–172 (1998)Google Scholar
  9. 9.
    Berkovich, A., McCoy, B., Schilling, A.: Rogers–Schur–Ramanujan type identities for the \(M(p, p^{\prime })\) minimal models of conformal field theory. Commun. Math. Phys. 191, 325–395 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bos, M., Misra, K.C.: Level two representations of \(A_7^{(2)}\) and Rogers–Ramanujan identities. Commun. Algebra 22, 3965–3983 (1994)CrossRefzbMATHGoogle Scholar
  11. 11.
    Bourbaki, N.: Algèbre Commutative. Hermann, Paris (1961)zbMATHGoogle Scholar
  12. 12.
    Bressoud, D.M.: A generalization of the Rogers–Ramanujan identities for all moduli. J. Comb. Theory Ser. A 27, 64–68 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Bressoud, D.M.: An analytic generalization of the Rogers–Ramanujan identities with interpretation. Quart. J. Math. Oxf. 31, 385–399 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Calinescu, C., Lepowsky, J., Milas, A.: Vertex-algebraic structure of the principal subspaces of level one modules for the untwisted affine Lie algebras of types A, D, E. J. Algebra 323, 167–192 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Capparelli, S.: On some representations of twisted affine Lie algebras and combinatorial identities. J. Algebra 154, 335–355 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Dong, C., Lepowsky, J.: Generalized vertex algebras and relative vertex operators. Progress in Mathematics, vol. 112. Birkhäuser, Boston (1993)Google Scholar
  17. 17.
    Feigin, B., Jimbo, M., Loktev, S., Miwa, T., Mukhin, E.: Bosonic formulas for \((k,l)\)-admissible partitions. arXiv:math.QA/0107054; Addendum to ‘Bosonic formulas for \((k,l)\)-admissible partitions’. arXiv:math.QA/0112104
  18. 18.
    Feigin, B., Kedem, R., Loktev, S., Miwa, T., Mukhin, E.: Combinatorics of the \(\widehat{\mathfrak{sl}}_2\) spaces of coinvariants. Transform. Gr. 6, 25–52 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Feigin, B., Stoyanovskiĭ, A.: Functional models of the representations of current algebras, and semi-infinite Schubert cells. Funct. Anal. Appl. 28, 55–72 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Feigin, B., Stoyanovskiĭ, A.: Quasi-particles model for the representations of Lie algebras and geometry of flag manifolds. arxiv:hep-th/9308079
  21. 21.
    Feigin, E.: The PBW filtration. Represent. Theory 13, 165–181 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Foda, O., Quano, Y.-H.: Polynomial identities of the Rogers–Ramanujan type. Int. J. Mod. Phys. A 10, 2291–2315 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Frenkel, I.B., Huang, Y.-Z., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules. Mem. Am. Math. Soc. 104(494) (1993)Google Scholar
  24. 24.
    Frenkel, I.B., Lepowsky, J., Meurman, A.: Vertex operator algebras and the Monster. Pure and Applied Mathematics. Academic Press, San Diego (1988)Google Scholar
  25. 25.
    Frenkel, I.B., Zhu, Y.: Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math. J. 66, 123–168 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Georigijev, G.: Combinatorial constructions of modules for infinite-dimensional Lie algebras, I. Principal subspace. J. Pure Appl. Algebra 112, 247–286 (1996)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Georigijev, G.: Combinatorial constructions of modules for infinite-dimensional Lie algebras, II. Parafermionic space. arXiv:q-alg/9504024
  28. 28.
    Gordon, B.: A combinatorial generalization of the Rogers–Ramanujan identities. Am. J. Math. 83, 393–399 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Jing, N., Misra, K.C., Savage, C.D.: On multi-color partitions and the generalized Rogers–Ramanujan identities. Commun. Contemp. Math. 03, 533–548 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Kac, V.G.: Infinite-dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)CrossRefzbMATHGoogle Scholar
  31. 31.
    Lepowsky, J.: Lectures on Kac–Moody Lie Algebras. Université de Paris VI (1978)Google Scholar
  32. 32.
    Lepowsky, J., Milne, S.: Lie algebraic approaches to classical partition identities. Adv. Math. 29, 15–59 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Lepowsky, J., Primc, M.: Structure of the standard modules for the affine Lie algebra \(A^ {(1)}_1\). Cont. Math. Am. Math. Soc. 46 (1985)Google Scholar
  34. 34.
    Lepowsky, J., Wilson, R.L.: The structure of standard modules, I: Universal algebras and the Rogers–Ramanujan identities. Invent. Math. 77, 199–290 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Lepowsky, J., Wilson, R.L.: The structure of standard modules, II: the case \(A_1^{(1)}\), principal gradation. Invent. Math. 79, 417–442 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Li, H.-S.: Local systems of vertex operators, vertex superalgebras and modules. J. Pure Appl. Algebra 109, 143–195 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Mandia, M.: Structure of the level one standard modules for the affine Lie algebras \(B_\ell ^{(1)}\), \(F_4^{(1)}\), and \(G_2^{(1)}\). Mem. Amer. Math. Soc. 65 (1987)Google Scholar
  38. 38.
    Meurman, A., Primc, M.: Annihilating ideals of standard modules of \(\mathfrak{sl}(2,\mathbb{C}){\tilde{ }}\) and combinatorial identities. Adv. Math. 64, 177–240 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Meurman, A., Primc, M.: Vertex operator algebras and representations of affine Lie algebras. Acta Appl. Math. 44, 207–215 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Meurman, A., Primc, M.: Annihilating fields of standard modules of \({\mathfrak{sl}}(2,{\mathbb{C}})\,{\widetilde{}}\) and combinatorial identities. Mem. Am. Math. Soc. 137(652) (1999)Google Scholar
  41. 41.
    Meurman, A., Primc, M.: A basis of the basic \({\mathfrak{sl}}(3,{\mathbb{C}})\,{\widetilde{}}\) -module. Commun. Contemp. Math. 3, 593–614 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Misra, K.C.: Structure of certain standard modules for \(A_n^{(1)}\) and the Rogers–Ramanujan identities. J. Algebra 88, 196–227 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Misra, K.C.: Structure of some standard modules for \(C_n^{(1)}\). J. Algebra 90, 385–409 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Misra, K.C.: Realization of the level two standard \(s\ell (2k+1, {{\mathbb{C}}})^\sim \)-modules. Trans. Am. Math. Soc. 316, 295–309 (1989)Google Scholar
  45. 45.
    Misra, K.C.: Realization of the level one standard \(\widetilde{C}_{2k+1}\)-modules. Trans. Am. Math. Soc. 321, 483–504 (1990)zbMATHGoogle Scholar
  46. 46.
    Nandi, D.: Partition identities arising from the standard \(A^{(2)}_2\)-modules of level 4, Ph.D. Rutgers Thesis, (2014)
  47. 47.
    Primc, M.: \((k, r)\)-admissible configurations and intertwining operators. Contemp. Math. 442, 425–434 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Primc, M.: Combinatorial bases of modules for affine Lie algebra \(B_2^{(1)}\). Cent. Eur. J. Math. 11, 197–225 (2013)MathSciNetzbMATHGoogle Scholar
  49. 49.
    Primc, M., Šikic, T.: Combinatorial bases of basic modules for affine Lie algebras \(C_n^{(1)}\). J. Math. Phys. 57(9), 1–19 (2016)CrossRefzbMATHGoogle Scholar
  50. 50.
    Siladić, I.: Twisted \({\mathfrak{sl}}(3,{\mathbb{C}})\,{\widetilde{}}\)-modules and combinatorial identities. Glasnik Matematički 52(72), 55–79 (2017)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Trupčević, G.: Combinatorial bases of Feigin–Stoyanovsky’s type subspaces of higher-level standard \(\tilde{\mathfrak{s}l}(\ell +1,{\mathbb{C}})\)-modules. J. Algebra 322, 3744–3774 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Warnaar, S.O.: The \(A_{2n}^{(2)}\) Rogers–Ramanujan Identities. arXiv:1309.5216
  53. 53.
    Xie, C.: Structure of the level two standard modules for the affine Lie algebra \(A_2^{(2)}\). Commun. Algebra 18, 2397–2401 (1990)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Science, Department of MathematicsUniversity of ZagrebZagrebCroatia
  2. 2.Faculty of Electrical Engineering and Computing, Department of Applied MathematicsUniversity of ZagrebZagrebCroatia

Personalised recommendations