The Ramanujan Journal

, Volume 48, Issue 2, pp 323–349 | Cite as

Transformation formulas of a character analogue of \(\log \theta _{2}(z)\)

  • Merve Çelebi BoztaşEmail author
  • Mümün Can


In this paper, transformation formulas for the function
$$\begin{aligned} A_{1}\left( z,s:\chi \right) =\sum \limits _{n=1}^{\infty }\sum \limits _{m=1} ^{\infty }\chi \left( n\right) \chi \left( m\right) \left( -1\right) ^{m}n^{s-1}e^{2\pi imnz/k} \end{aligned}$$
are obtained. Sums that appear in transformation formulas are generalizations of the Hardy–Berndt sums \(s_{j}(d,c), j=1,2,5\). As applications of these transformation formulas, reciprocity formulas for these sums are derived and several series relations are presented.


Dedekind sums Hardy–Berndt sums Bernoulli and Euler polynomials 

Mathematics Subject Classification

11F20 11B68 



The authors are grateful to the referee for many valuable comments and suggestions.


  1. 1.
    Alkan, E.: On Dirichlet L-functions with periodic coefficients and Eisenstein series. Monatsh. Math. 163, 249–280 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alkan, E., Xiong, M., Zaharescu, A.: A bias phenomenon on the behavior of Dedekind sums. Math. Res. Lett. 15, 1039–1052 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Apostol, T.M.: Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics. Springer, New York (1976)Google Scholar
  4. 4.
    Apostol, T.M., Vu, T.H.: Elementary proofs of Berndt’s reciprocity laws. Pac. J. Math. 98, 17–23 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Berndt, B.C.: Character transformation formulae similar to those for the Dedekind Eta-function. In: Proceedings of Symposia in Pure Mathematics, vol. XXIV, pp. 9–30. The American Mathematical Society, Providence (1973)Google Scholar
  6. 6.
    Berndt, B.C.: Character analogues of Poisson and Euler–Maclaurin summation formulas with applications. J. Number Theory 7, 413–445 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Berndt, B.C.: On Eisenstein series with characters and the values of Dirichlet L-functions. Acta Arith. 28, 299–320 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Berndt, B.C.: Periodic analogues of the Euler-Maclaurin and Poisson summation formulas with applications to number theory. Acta Arith. 28, 23–68 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Berndt, B.C.: Modular transformations and generalizations of several formulae of Ramanujan. Rocky Mt. J. Math. 7, 147–190 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Berndt, B.C.: Analytic Eisenstein series, theta functions and series relations in the spirit of Ramanujan. J. Reine Angew. Math. 303(304), 332–365 (1978)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Berndt, B.C., Goldberg, L.A.: Analytic properties of arithmetic sums arising in the theory of the classical theta functions. Siam J. Math. Anal. 15(1), 143–150 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Can, M.: Some arithmetic on the Hardy sums \(s_{2}\left( h, k\right) \) and \(s_{3}\left( h, k\right) \). Acta Math. Sin. Engl. Ser. 20(2), 193–200 (2004)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Can, M., Kurt, V.: Character analogues of certain Hardy–Berndt sums. Int. J. Number Theory 10, 737–762 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Can, M., Dağlı, M.C.: Character analogue of the Boole summation formula with applications. Turk. J. Math. 41, 1204–1223 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Can, M., Cenkci, M., Kurt, V.: Generalized Hardy–Berndt sums. Proc. Jangjeon Math. Soc. 9(1), 19–38 (2006)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Carlitz, L.: Eulerian numbers and polynomials. Math. Mag. 32(5), 247–260 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Cenkci, M., Can, M., Kurt, V.: Degenerate and character Dedekind sums. J. Number Theory 124, 346–363 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Dağlı, M.C., Can, M.: A new generalization of Hardy–Berndt sums. Proc. Indian Acad. Sci. (Math. Sci.) 123(2), 177–192 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Dağlı, M.C., Can, M.: On reciprocity formulas for Apostol’s Dedekind sums and their analogues. J. Integer Seq. 17, Article 14.5.4 (2014)Google Scholar
  20. 20.
    Dağlı, M.C., Can, M.: Periodic analogues of Dedekind sums and transformation formulas of Eisenstein series. Ramanujan J. 44, 301–341 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Goldberg, L.A.: Transformations of theta-functions and analogues of Dedekind sums. Thesis, University of Illinois, Urbana (1981)Google Scholar
  22. 22.
    Hickerson, D.: Continued fractions and density results for Dedekind sums. J. Reine Angew. Math. 290, 113–116 (1977)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Jordan, C.: Calculus of Finite Differences. Chelsea, New York (1965)zbMATHGoogle Scholar
  24. 24.
    Lewittes, J.: Analytic continuation of the Eisenstein series. Trans. Am. Math. Soc. 171, 469–490 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Liu, H., Zhang, W.: Generalized Cochrane sums and Cochrane–Hardy sums. J. Number Theory 122(2), 415–428 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Liu, H., Gao, J.: Generalized Knopp identities for homogeneous Hardy sums and Cochrane–Hardy sums. Czech. Math. J. 62, 1147–1159 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Meyer, J.L.: Analogues of Dedekind sums. Thesis, University of Illinois, Urbana (1997)Google Scholar
  28. 28.
    Meyer, J.L.: Properties of certain integer-valued analogues of Dedekind sums. Acta Arith. 82(3), 229–242 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Meyer, J.L.: A reciprocity congruence for an analogue of the Dedekind sum and quadratic reciprocity. J. Théor. Nombres Bordeaux 12(1), 93–101 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Meyer, J.L.: Character analogues of Dedekind sums and transformations of analytic Eisenstein series. Pac. J. Math. 194(1), 137–164 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Peng, W., Zhang, T.: Some identities involving certain Hardy sum and Kloosterman sum. J. Number Theory 165, 355–362 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Pettet, M.R., Sitaramachandrarao, R.: Three-term relations for Hardy sums. J. Number Theory 25(3), 328–339 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Rademacher, H.: Zur theorie der Dedekindschen summen. Math. Z. 63, 445–463 (1956)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Simsek, Y.: Theorems on three term relations for Hardy sums. Turkish J. Math. 22, 153–162 (1998)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Simsek, Y.: Relations between theta functions, Hardy sums, Eisenstein and Lambert series in the transformation formulae of \(\log \eta _{g, h}(z)\). J. Number Theory 99, 338–360 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Simsek, Y.: Remarks on reciprocity laws of the Dedekind and Hardy sums. Adv. Stud. Contemp. Math. (Kyunshang) 12, 237–246 (2006)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Simsek, Y.: p-Adic q-higher-order Hardy-type sums. J. Korean Math. Soc. 43, 111–131 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Simsek, Y.: q-Hardy–Berndt type sums associated with q-Genocchi type zeta and q-l-functions. Nonlinear Anal. 71, 377–395 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Sitaramachandrarao, R.: Dedekind and Hardy sums. Acta Arith. 43, 325–340 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Wang, W., Han, D.: An identity involving certain Hardy sums and Ramanujan’s sum. Adv. Differ. Equ. 2013, 261 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Xu, Z., Zhang, W.: The mean value of Hardy sums over short intervals. Proc. R. Soc. Edinb. 137, 885–894 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Zhang, H., Zhang, W.: On the identity involving certain Hardy sums and Kloosterman sums. J. Inequal. Appl. 2014, 52 (2014)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsAkdeniz UniversityAntalyaTurkey

Personalised recommendations