Advertisement

The Ramanujan Journal

, Volume 50, Issue 3, pp 621–637 | Cite as

Infinite sums for Fibonacci polynomials and Lucas polynomials

  • Bing HeEmail author
  • Ruiming Zhang
Article
  • 174 Downloads

Abstract

In this paper we establish certain infinite sums involving many arithmetical functions and the Fibonacci polynomials or the Lucas polynomials. Several of the sums are given explicitly in Jacobi theta functions.

Keywords

Infinite reciprocal sum Fibonacci polynomials Lucas polynomials Arithmetical function 

Mathematics Subject Classification

11B39 11F27 

Notes

Acknowledgements

The authors would like to thank the referee for his/her helpful comments.

References

  1. 1.
    André-Jeannin, R.: Irrationalité de la somme des inverses de certaines suites récurrentes. C. R. Acad. Sci. Paris Sér. I Math. 308(19), 539–541 (1989)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Apostol, T.M.: Introduction to Analytic Number Theory. Springer, Science & Business Media, New York (2013)Google Scholar
  3. 3.
    Backstrom, R.P.: On reciprocal series related to Fibonacci numbers with subscripts in arithmetic progression. Math. Mag. 47.23Q (1974)Google Scholar
  4. 4.
    Bellman, R.: A Brief Introduction to Theta Functions. Courier Corporation, New York (2013)zbMATHGoogle Scholar
  5. 5.
    Berndt, B.C.: Number Theory in the Spirit of Ramanujan, p. 187. American Mathematical Society, Providence (2006)zbMATHGoogle Scholar
  6. 6.
    Borwein, J.M., Borwein, P.B.: Pi and the AGM. Wiley, New York (1987)zbMATHGoogle Scholar
  7. 7.
    Cohn, E.: Lucas and Fibonacci numbers and some Diophantine equations. Glasg. Math. J. 7(1), 24–28 (1965)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Good, I.J.: A reciprocal series of Fibonacci numbers. Fibonacci Q. 12(4), 346 (1974)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Koshy, T.: Fibonacci and Lucas Numbers with Applications, vol. 51. Wiley, New York (2011)zbMATHGoogle Scholar
  10. 10.
    Pólya, G., Szegő, G.: Problems and Theorems in Analysis II. Theory of Functions, Zeros, Polynomials, Determinants, Number Theory, Geometry. Translated from the German by C. E. Billigheimer. Reprint of the 1976 English translation. Classics in Mathematics. Springer, Berlin (1998)CrossRefGoogle Scholar
  11. 11.
    Vajda, S.: Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications. Courier Corporation, North Chelmsford (1989)zbMATHGoogle Scholar
  12. 12.
    Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis, 4th edn. Cambridge University Press, Cambridge (1990)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of ScienceNorthwest A&F UniversityYanglingPeople’s Republic of China

Personalised recommendations