Godement–Jacquet integrals on \(\mathrm{GL}(n,{\mathbf C})\)

  • Taku IshiiEmail author


We explicitly compute the complex archimedean part of the Godement–Jacquet zeta integral. We give a pair of a Schwartz–Bruhat function and a matrix coefficient which attains the local L-factor.


Standard L-functions Archimedean zeta integrals Principal series representations 

Mathematics Subject Classification



  1. 1.
    Gel’fand, I.M., Tsetlin, M.L.: Finite-dimensional representations of the group of orthogonal matrices. Dokl. Akad. Nauk SSSR 71, 1017–1020 (1950)MathSciNetGoogle Scholar
  2. 2.
    Godement, R., Jacquet, H.: Zeta Functions of Simple Algebras. Lecture Notes in Mathematics, vol. 260. Springer, Berlin (1972)zbMATHGoogle Scholar
  3. 3.
    Goldfeld, D., Hundley, J.: Automorphic Representations and L-Functions for the General Linear Group. Cambridge Studies in Advanced Mathematics, vol. I, II, pp. 129–130. Cambridge University Press, Cambridge (2011)CrossRefzbMATHGoogle Scholar
  4. 4.
    Jacquet, H.: Principal \(L\)-functions of the linear group. In: Proceedings of Symposia in Pure Mathematics, Vol. 33, part 2, pp. 63–86 (1979)Google Scholar
  5. 5.
    Vilenkin, N., Klimyk, A.: Representation of Lie Groups and Special Functions, vol. 3. Kluwer Academic Publishers, Dordrecht (1992)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Science and TechnologySeikei UniversityMusashinoJapan

Personalised recommendations