The Ramanujan Journal

, Volume 48, Issue 1, pp 217–231 | Cite as

Nonnegative linearization coefficients of the generalized Bessel polynomials

  • D. D. TcheutiaEmail author


In this work, we solve the general linearization problem for the generalized Bessel polynomials using their inversion formula. For some particular values, we get a recurrence relation satisfied by the linearization coefficients from which we deduce their nonnegativity. We also recover a result given by Berg and Vignat (Constr Approx 27:15–32, 2008) and derived an explicit formula that generalizes a result by Atia and Zeng (Ramanujan J 28:211–221, 2012).


Linearization formula Multiplication formula Bessel polynomials Nonnegativity 

Mathematics Subject Classification

33C10 33C45 



The author is grateful for the useful comments from the referee which improve considerably this manuscript.


  1. 1.
    Area, I., Godoy, E., Ronveaux, A., Zarzo, A.: Solving connection and linearization problems within the Askey scheme and its \(q\)-analogue via inversion formulas. J. Comput. Appl. Math. 133, 151–162 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Askey, R., Gasper, G.: Convolution structures for Laguerre polynomials. J. Anal. Math. 31, 48–68 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Atia, M.J., Zeng, J.: An explicit formula for the linearization coefficients of Bessel polynomials. Ramanujan J. 28, 211–221 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Benabdallah, M., Atia, M.J.: Positivity and recursion formula of the linearization coefficients of Bessel polynomials. Asian–Eur. J. Math. 11, 1–13 (2018). MathSciNetzbMATHGoogle Scholar
  5. 5.
    Berg, C., Vignat, C.: Linearization coefficients of Bessel polynomials and properties of student \(t\)-distributions. Constr. Approx. 27, 15–32 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Carlitz, L.: A note on the Bessel polynomials. Duke Math. J. 24, 151–162 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dickinson, D.: On Lommel and Bessel polynomials. Proc. Am. Math. Soc. 5, 946 (1954)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Doha, E.H., Ahmed, H.M.: Recurrences and explicit formulae for the expansion and connection coefficients in series of Bessel polynomials. J. Phys. A 37, 8045–8063 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Even, S., Gillis, J.: Derangements and Laguerre polynomials. Math. Proc. Camb. Philos. Soc. 79, 135–143 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Favard, J.: Sur les polynômes de Tchebychev. C. R. Acad. Sci. (Paris) 200, 2052–2053 (1935)zbMATHGoogle Scholar
  11. 11.
    Grosswald, E.: The Student \(t\)-distribution of any degree of freedom is infinitely divisible. Z. Wahrsch. Verw. Gebiete 36, 103–109 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Grosswald, E.: Bessel Polynomials. Lecture Notes in Mathematics, vol. 698. Springer, New York (1978)Google Scholar
  13. 13.
    Ismail, M.E.H.: Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia Math. Appl. vol. 98, Cambridge University Press, Cambridge (2005)Google Scholar
  14. 14.
    Kim, D., Zeng, J.: A combinatorial formula for the linearization coefficients of general Sheffer polynomials. Eur. J. Comb. 22, 313–332 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Koepf, W., Schmersau, D.: Representations of orthogonal polynomials. J. Comput. Appl. Math. 90, 57–94 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Koepf, W.: Hypergeometric Summation. An Algorithmic Approach to Summation and Special Function Identities, 2nd edn. Springer, London (2014)zbMATHGoogle Scholar
  17. 17.
    Koekoek, R., Lesky, P.A., Swarttouw, R.F.: Hypergeometric Orthogonal Polynomials and Their \(q\)-Analogues. Springer, Berlin (2010)CrossRefzbMATHGoogle Scholar
  18. 18.
    Koornwinder, T.: Positivity proofs for linearization and connection coefficients of orthogonal polynomials sastisfying an addition formula. J. Lond. Math. Soc. 18, 101–114 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Krall, H.L., Frink, O.: A new class of orthogonal polynomials: The Bessel polynomials. Trans. Am. Math. Soc. 65, 100–115 (1949)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lewanowicz, S.: The hypergeometric functions approach to the connection problem for the classical orthogonal polynomials. Technical Report, Institute of Computer Science, University of Wrocław (2003)Google Scholar
  21. 21.
    Petkovs̆ek, M., Wilf, H.: \(A = B\). A. K. Peters, Wellesley (1996)CrossRefGoogle Scholar
  22. 22.
    Prudnikov, A.P., Brychkov, YuA, Marichev, O.I.: Integrals and Series, vol. 3. Gordon and Breach Science Publishers, New York (1990)zbMATHGoogle Scholar
  23. 23.
    Rainville, E.D.: Special Functions. The Macmillan Company, New York (1960)zbMATHGoogle Scholar
  24. 24.
    Sánchez-Ruiz, J., Dehesa, J.S.: Expansions in series of orthogonal hypergeometric polynomials. J. Comput. Appl. Math. 89, 155–170 (1997)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Tcheutia, D.D., Foupouagnigni, M., Koepf, W., Njionou Sadjang, P.: Coefficients of multiplication formulas for classical orthogonal polynomials. Ramanujan J. 39, 497–531 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, Cambridge (1966)zbMATHGoogle Scholar
  27. 27.
    Zarzo, A., Area, I., Godoy, E., Ronveaux, A.: Results for some inversion problems for classical continuous and discrete orthogonal polynomials. J. Phys. A 30, 35–40 (1997)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of MathematicsUniversity of KasselKasselGermany

Personalised recommendations