The Ramanujan Journal

, Volume 46, Issue 3, pp 821–833 | Cite as

Congruences for 7 and 49-regular partitions modulo powers of 7

  • Chandrashekar Adiga
  • Ranganatha DasappaEmail author


Let \(b_{k}(n)\) denote the number of k-regular partitions of n. In this paper, we prove Ramanujan-type congruences modulo powers of 7 for \(b_{7}(n)\) and \(b_{49}(n)\). For example, for all \(j\ge 1\) and \(n\ge 0\), we prove that
$$\begin{aligned} b_{7}\Bigg (7^{2j-1}n+\frac{3\cdot 7^{2j-1}-1}{4}\Bigg )\equiv 0\pmod {7^{j}} \end{aligned}$$
$$\begin{aligned} b_{49}\Big (7^{j}n+7^{j}-2\Big )\equiv 0\pmod {7^{j}}. \end{aligned}$$


Congruences Partitions k-Regular partitions 

Mathematics Subject Classification

05A15 05A17 11P83 



The author wishes to thank the referee for many valuable suggestions and comments. The authors are indebted to Professor Michael Hirschhorn for his valuable suggestions which have substantially improved our paper.


  1. 1.
    Ahmed, Z., Baruah, N.D.: New congruences for \(\ell \)-regular partitions for \(\ell \in \{5, 6, 7, 49\}\). Ramanujan J. 40, 649–668 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Atkin, A.O.L.: Proof of a conjecture of Ramanujan. Glasg. Math. J. 8, 14–32 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Baruah, N.D., Das, K.: Parity results for \(7\)-regular and \(23\)-regular partitions. Int. J. Number Theory 11, 2221–2238 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Boll, E., Penniston, D.: The \(7\)-regular and \(13\)-regular partition functions modulo. Bull. Aust. Math. Soc. 93, 410–419 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Calkin, N., Drake, N., James, K., Law, S., Lee, P., Penniston, D., Radder, J.: Divisibility properties of the 5-regular and 13-regular partition functions. Integers 8, A60 (2008)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Chowla, S.: Congruence properties of partitions. J. Lond. Math. Soc. 9, 247 (1934)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cui, S.P., Gu, N.S.S.: Arithmetic properties of the \(\ell \)-regular partitions. Adv. Appl. Math. 51, 507–523 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cui, S.P., Gu, N.S.S.: Congruences for 9-regular partitions modulo 3. Ramanujan J. 38, 503–512 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dandurand, B., Penniston, D.: \(\ell \)-Divisibility of \(\ell \)-regular partition functions. Ramanujan J. 19, 63–70 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Furcy, D., Penniston, D.: Congruences for \(\ell \)-regular partitions modulo \(3\). Ramanujan J. 27, 101–108 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Garvan, F.G.: A simple proof of Watson’s partition congruences for powers of \(7\). J. Aust. Math. Soc. A 36, 316–334 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hirschhorn, M.D., Hunt, D.C.: A simple proof of the Ramanujan conjecture for powers of \(5\). J. Reine Angew. Math. 326, 1–17 (1981)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Hou, Q.-H., Sun, L.H., Zhang, L.: Quadratic forms and congruences for \(\ell \)-regular partitions modulo 3, 5 and 7. Adv. Appl. Math. 70, 32–44 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lovejoy, J., Penniston, D.: 3-Regular partitions and a modular \(K\) 3 surface. Contemp. Math. 291, 177–182 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ono, K., Penniston, D.: The 2-Adic behavior of the number of partitions into distinct parts. J. Comb. Theory A 92, 138–157 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Penniston, D.: Arithmetic of \(\ell \)-regular partition functions. Int. J. Number Theory 4, 295–302 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ramanujan, S.: Some properties of \(p(n)\), the number of partitions of \(n\). Proc. Camb. Philos. Soc. 19, 207–210 (1919)zbMATHGoogle Scholar
  18. 18.
    Watson, G.N.: Ramanujans Vermutung über Zerfällungsanzahlen. J. Reine Angew. Math. 179, 97–128 (1938)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Webb, J.J.: Arithmetic of the 13-regular partition function modulo 3. Ramanujan J. 25, 49–56 (2011)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Studies in MathematicsUniversity of MysoreMysoreIndia

Personalised recommendations