Advertisement

The Ramanujan Journal

, Volume 46, Issue 3, pp 775–794 | Cite as

The first moment of central values of symmetric square L-functions in the weight aspect

Article

Abstract

We establish an asymptotic formula with arbitrary power saving for the first moment of the symmetric square L-functions \(L(s,\mathrm{sym}^2f)\) at \(s=\frac{1}{2}\) for \(f\in \mathcal {H}_k\) as even \(k\rightarrow \infty \), where \(\mathcal {H}_k\) is an orthogonal basis of weight-k Hecke eigen cusp forms for \(SL(2,\mathbb {Z})\). The approach taken allows us to extract two secondary main terms from the best-known error term \(O(k^{-\frac{1}{2}})\). Moreover, our result exhibits a connection between the symmetric square L-functions and quadratic fields, which is the main theme of Zagier’s work Modular forms whose coefficients involve zeta-functions of quadratic fields in 1977.

Keywords

Holomorphic Hecke eigenforms Symmetric square L-functions Weight aspect Quadratic fields 

Mathematics Subject Classification

11F11 11F66 11F67 

Notes

Acknowledgements

The author thanks Professor Wenzhi Luo for stimulating conversations and helpful comments. The author thanks Professors Dorian Goldfeld, Roman Holowinsky, and Kannan Soundararajan for their interest in this work. Thanks also go to the referee for the thorough reading and helpful suggestions.

References

  1. 1.
    Balkanova, O., Frolenkov, D.: On the mean value of symmetric square \(L\)-functions (2016). arXiv:1610.06331
  2. 2.
    Erdélyi, A. (ed.): Higher Transcendental Functions, vol. 1. McGraw-Hill, New York (1953)Google Scholar
  3. 3.
    Erdélyi, A. (ed.): Tables of Integral Transforms, vol. 1. McGraw-Hill, New York (1954)Google Scholar
  4. 4.
    Fomenko, O.M.: Behavior of automorphic \(L\)-functions at the points \(s=1\) and \(s=1/2\). J. Math. Sci. 129(3), 3898–3909 (2005)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Gelbart, S., Jacquet, H.: A relation between automorphic representations of \(\rm {GL(2)}\) and \(\rm {GL(3)}\). Ann. Sci. Ecole Norm. Sup. 11(4), 471–552 (1978)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Iwaniec, H., Kowalski, E.: Analytic Number Theory, Colloquium Publications, vol. 53. American Mathematical Society, Providence (2004)MATHGoogle Scholar
  7. 7.
    Khan, R.: The first moment of the symmetric-square \(L\)-function. J. Number Theory 124, 259–266 (2007)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Kohnen, W., Sengupta, J.: On the average of central values of symmetric square \(L\)-functions in weight aspect. Nagoya Math. J. 167, 95–100 (2002)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Lau, Y.-K.: Non-vanishing of symmetric square L-functions. Proc. Am. Math. Soc. 130(11), 3133–3139 (2002)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Lau, Y.-K., Tsang, K.-M.: A mean square formula for central values of twisted automorphic \(L\)-functions. Acta Arith. 118(3), 231–262 (2005)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    LeVeque, W.J.: Fundamentals of Number Theory. Dover Publications, New York (1996)MATHGoogle Scholar
  12. 12.
    Luo, W.: Nonvanishing of the central \(L\)-values with large weight. Adv. Math. 285, 220–234 (2015)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Mangus, W., Oberhettinger, F., Soni, R.P.: Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd enlarged ed. Springer, New York (1966)Google Scholar
  14. 14.
    Prudnikov, A.P., Brychkov, Yu.A., Marichev, O.I.: Integrals and Series, vol. 1, 2. Gordon and Breach, New York (1986)Google Scholar
  15. 15.
    Shimura, G.: On the holomorphy of certain Dirichlet series. Proc. Lond. Math. Soc. 31(3), 79–98 (1975)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Sun, Q.: On the first moment of the symmetric-square \(L\)-function. Proc. Am. Math. Soc 141(2), 369–375 (2013)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Zagier, D.: Modular forms whose coefficients involve zeta-functions of quadratic fields, In: Serre, J.-P., Zagier, D. (eds.) Modular Functions of One Variable VI (Bonn, 1976). Lecture Notes in Mathematics, vol. 627, pp. 106–169. Springer, New York (1977)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of MathematicsThe Ohio State UniversityColumbusUSA

Personalised recommendations