The Ramanujan Journal

, Volume 46, Issue 1, pp 161–171 | Cite as

A family of polylog-trigonometric integrals



In this paper, we study the sequences
$$\begin{aligned} I_n=\int _0^1\mathrm {Li}_n(\sin \pi x)\mathrm {d}x\quad \text{ and }\quad J_n=\int _0^1\mathrm {Li}_n(\cos \pi x)\mathrm {d}x, \end{aligned}$$
where \(\mathrm {Li}_n\) is the nth polylogarithm function. Among others, we determine their generating functions, asymptotic behaviour and their connection to the well-known log-sine integrals
$$\begin{aligned} S_n=(-1)^n\int _0^1\log ^n(\sin \pi x)\mathrm {d}x. \end{aligned}$$
With the help of the explicit forms of \(I_n\) and \(J_n\), we deduce closed-form evaluations for a number of polylog-trigonometric definite integrals.


Log-sine integrals Polylogarithm functions Gamma function Hypergeometric function 

Mathematics Subject Classification




The author is grateful to the unknown referee for the detailed review of the manuscript.


  1. 1.
    Alzer, H., Richards, K.C.: Series representations for special functions and mathematical constants. Ramanujan J. 40, 291–310 (2016)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Amdeberhan, T., Coffey, M.W., Espinosa, O., Koutschan, C., Manna, D.V., Moll, V.H.: Integrals of powers of log-gamma. Proc. Am. Math. Soc. 139(2), 535–545 (2011)CrossRefMATHGoogle Scholar
  3. 3.
    Beumer, M.G.: Some special integrals. Am. Math. Mon. 68, 645–647 (1961)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Boros, G., Moll, V.H.: Irresistible Integrals. Cambridge University, Press (2004)CrossRefMATHGoogle Scholar
  5. 5.
    Borwein, J.M., Straub, A.: Special values of generalized log-sine integrals, Proceedings of ISSAC 2011 (International Symposium on Symbolic and Algebraic Computation) , pp. 43-50 (2011)Google Scholar
  6. 6.
    Choi, J.: Log-sine and log-cosine integrals. Honam Math. J. 35(2), 137–146 (2013)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Choi, J.: Further log-sine and log-cosine integrals. J. Chungcheong Math. Soc. 26(4), 769–780 (2013)CrossRefMATHGoogle Scholar
  8. 8.
    Choi, J., Srivastava, H.M.: Gamma function representation for some definite integrals. Kyungpook Math. J. 37, 205–209 (1997)MathSciNetMATHGoogle Scholar
  9. 9.
    Devoto, A., Duke, D.W.: Table of integrals and formulae for Feynman diagram calculations. La Rivista del Nuovo Cimento 7(6), 1–39 (1984)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Espinosa, O., Moll, V.H.: On some definite integrals involving the Hurwitz zeta function. Part 1. Ramanujan J. 6, 159–188 (2002)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Espinosa, O., Moll, V.H.: On some definite integrals involving the Hurwitz zeta function. Part 2. Ramanujan J. 6, 449–468 (2002)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Gradshteyn, I.S., Ryzhik, I.M.: In: Jeffrey, A. (ed.) Table of Integrals, Series and Products, 7th edn. Academic Press, Cambridge (2007)Google Scholar
  13. 13.
    Kalmykov, M.: About higher order \(\varepsilon \)-expansion of some massive two- and three-loop master-integrals. Nucl. Phys. B 718, 276–292 (2005)CrossRefMATHGoogle Scholar
  14. 14.
    Lewin, L.: Polylogarithms and Associated Functions, North Holland (1981)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of MathematicsNanjing University of Information Science and TechnologyNanjingPeople’s Republic of China

Personalised recommendations