Advertisement

Consistency matters: measurement invariance of the EORTC QLQ-C30 questionnaire in patients with hematologic malignancies

  • Kathrin SommerEmail author
  • Francesco Cottone
  • Neil K. Aaronson
  • Peter Fayers
  • Paola Fazi
  • Gianantonio Rosti
  • Emanuele Angelucci
  • Gianluca Gaidano
  • Adriano Venditti
  • Maria Teresa Voso
  • Michele Baccarani
  • Marco Vignetti
  • Fabio Efficace
Article
  • 20 Downloads

Abstract

Purpose

To ensure that observed differences in the scores of the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire Core 30 (EORTC QLQ-C30) reflect actual differences in health-related quality of life (HRQoL) rather than measurement bias, measurement invariance needs to be established. We investigated the assumption of measurement invariance of the EORTC QLQ-C30 in patients with hematological malignancies across age, sex, comorbidity, disease type, and time.

Methods

We used a large database of patients with hematological malignancies, which included HRQoL data collected with the EORTC QLQ-C30. We used the structural equation modeling approach to test for measurement (metric and scalar) invariance across groups (age, sex, comorbidity, disease) and time (baseline, 1 month and 2 month follow-up). Longitudinal invariance was examined in a subgroup of patients diagnosed with myelodysplastic syndromes.

Results

Confirmatory factor analyses demonstrated full measurement invariance for age and comorbidity and over time, while support for partial scalar invariance was obtained for sex and disease. Violations of invariance for sex were observed for items of the physical functioning scale and the emotional functioning scale, while for disease type, violations of invariance were observed for items of the physical functioning scale, emotional functioning scale, and the cognitive functioning scale.

Conclusions

Our findings support measurement invariance of the EORTC QLQ-C30 in a large sample of patients with hematological malignancies. The results showed that the number of non-invariant items was negligible, suggesting that this questionnaire is a valid and robust measurement tool in patients with hematological malignancies, also for comparisons across groups and time.

Keywords

Health-related quality of life EORTC QLQ-C30 Measurement invariance Hematological malignancies Structural equation modeling Confirmatory factor analysis 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest related to this work.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the Ethical Standards of the Institutional and/or National Research Committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Aaronson, N. K., Ahmedzai, S., Bergman, B., Bullinger, M., Cull, A., Duez, N. J., et al. (1993). The European Organization for Research and Treatment of Cancer QLQ-C30: A quality-of-life instrument for use in international clinical trials in oncology. Journal of the National Cancer Institute,85(5), 365–376.CrossRefGoogle Scholar
  2. 2.
    King, M. T. (1996). The interpretation of scores from the EORTC quality of life questionnaire QLQ-C30. Quality of Life Research,5(6), 555–567.  https://doi.org/10.1007/bf00439229.CrossRefPubMedGoogle Scholar
  3. 3.
    Cocks, K., King, M. T., Velikova, G., de Castro, G., Martyn St-James, M., Fayers, P. M., et al. (2012). Evidence-based guidelines for interpreting change scores for the European Organisation for the Research and Treatment of Cancer Quality of Life Questionnaire Core 30. European Journal of Cancer,48(11), 1713–1721.  https://doi.org/10.1016/j.ejca.2012.02.059.CrossRefPubMedGoogle Scholar
  4. 4.
    Osoba, D., Rodrigues, G., Myles, J., Zee, B., & Pater, J. (1998). Interpreting the significance of changes in health-related quality-of-life scores. Journal of Clinical Oncology,16(1), 139–144.  https://doi.org/10.1200/jco.1998.16.1.139.CrossRefPubMedGoogle Scholar
  5. 5.
    Vandenberg, R. J., & Lance, C. E. (2000). A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organizational research. Organizational Research Methods,3(1), 4–70.  https://doi.org/10.1177/109442810031002.CrossRefGoogle Scholar
  6. 6.
    Cole, D. A., & Maxwell, S. E. (1985). Multitrait–multimethod comparisons across populations: A confirmatory factor analytic approach. Multivariate Behavioral Research,20(4), 389–417.  https://doi.org/10.1207/s15327906mbr2004_3.CrossRefPubMedGoogle Scholar
  7. 7.
    Meredith, W. (1993). Measurement invariance, factor analysis and factorial invariance. Psychometrika,58(4), 525–543.  https://doi.org/10.1007/bf02294825.CrossRefGoogle Scholar
  8. 8.
    Steenkamp, J.-B. E. M., & Baumgartner, H. (1998). Assessing measurement invariance in cross-national consumer research. Journal of Consumer Research,25(1), 78–107.  https://doi.org/10.1086/209528.CrossRefGoogle Scholar
  9. 9.
    Byrne, B. M., Shavelson, R. J., & Muthén, B. (1989). Testing for the equivalence of factor covariance and mean structures: The issue of partial measurement invariance. Psychological Bulletin,105(3), 456–466.  https://doi.org/10.1037/0033-2909.105.3.456.CrossRefGoogle Scholar
  10. 10.
    Costa, D. S., Aaronson, N. K., Fayers, P. M., Pallant, J. F., Velikova, G., & King, M. T. (2015). Testing the measurement invariance of the EORTC QLQ-C30 across primary cancer sites using multi-group confirmatory factor analysis. Quality of Life Research,24(1), 125–133.  https://doi.org/10.1007/s11136-014-0799-0.CrossRefPubMedGoogle Scholar
  11. 11.
    King-Kallimanis, B. L., ter Hoeven, C. L., de Haes, H. C., Smets, E. M., Koning, C. C., & Oort, F. J. (2012). Assessing measurement invariance of a health-related quality-of-life questionnaire in radiotherapy patients. Quality of Life Research,21(10), 1745–1753.  https://doi.org/10.1007/s11136-011-0094-2.CrossRefPubMedGoogle Scholar
  12. 12.
    Huang, C. C., Lien, H. H., Tu, S. H., Huang, C. S., Jeng, J. Y., Chao, H. L., et al. (2010). Quality of life in Taiwanese breast cancer survivors with breast-conserving therapy. Journal of the Formosan Medical Association,109(7), 493–502.  https://doi.org/10.1016/s0929-6646(10)60083-6.CrossRefPubMedGoogle Scholar
  13. 13.
    Gerlich, C., Schuler, M., Jelitte, M., Neuderth, S., Flentje, M., Graefen, M., et al. (2016). Prostate cancer patients’ quality of life assessments across the primary treatment trajectory: ‘True’ change or response shift? Acta Oncologica,55(7), 814–820.  https://doi.org/10.3109/0284186x.2015.1136749.CrossRefPubMedGoogle Scholar
  14. 14.
    Fayers, P., Aaronson, N. K., Bjordal, K., Groenvold, M., Curran, D., & Bottomley, A. (2001). EORTC QLQ-C30 scoring manual (3rd ed.). Brussels: European Organisation for Research and Treatment of Cancer.Google Scholar
  15. 15.
    Millsap, R. E., & Yun-Tein, J. (2004). Assessing factorial invariance in ordered-categorical measures. Multivariate Behavioral Research,39(3), 479–515.  https://doi.org/10.1207/s15327906mbr3903_4.CrossRefGoogle Scholar
  16. 16.
    Saris, W. E., Satorra, A., & van der Veld, W. M. (2009). Testing structural equation models or detection of misspecifications? Structural Equation Modeling: A Multidisciplinary Journal,16(4), 561–582.  https://doi.org/10.1080/10705510903203433.CrossRefGoogle Scholar
  17. 17.
    Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal,6(1), 1–55.  https://doi.org/10.1080/10705519909540118.CrossRefGoogle Scholar
  18. 18.
    Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods of Psychological Research,8(2), 23–74.Google Scholar
  19. 19.
    Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software,48(2), 1–36.  https://doi.org/10.18637/jss.v048.i02.CrossRefGoogle Scholar
  20. 20.
    Bollen, K. A. (1989). Structural equations with latent variables. Wiley series in probability and mathematical statistics. New York: Wiley.Google Scholar
  21. 21.
    Lee, Y. S. (2005). Gender differences in physical activity and walking among older adults. Journal of Women and Aging,17(1–2), 55–70.  https://doi.org/10.1300/j074v17n01_05.CrossRefPubMedGoogle Scholar
  22. 22.
    Efficace, F., Baccarani, M., Breccia, M., Alimena, G., Rosti, G., Cottone, F., et al. (2011). Health-related quality of life in chronic myeloid leukemia patients receiving long-term therapy with imatinib compared with the general population. Blood,118(17), 4554–4560.  https://doi.org/10.1182/blood-2011-04-347575.CrossRefPubMedGoogle Scholar
  23. 23.
    Winkler, D., Pjrek, E., & Kasper, S. (2005). Anger attacks in depression—Evidence for a male depressive syndrome. Psychotherapy and Psychosomatics,74(5), 303–307.  https://doi.org/10.1159/000086321.CrossRefPubMedGoogle Scholar
  24. 24.
    Green, B. (2003). Post-traumatic stress disorder: Symptom profiles in men and women. Current Medical Research and Opinion,19(3), 200–204.  https://doi.org/10.1185/030079903125001604.CrossRefPubMedGoogle Scholar
  25. 25.
    Smith, L. L., & Reise, S. P. (1998). Gender differences on negative affectivity: An IRT study of differential item functioning on the multidimensional personality questionnaire stress reaction scale. Journal of Personality and Social Psychology,75(5), 1350–1362.  https://doi.org/10.1037/0022-3514.75.5.1350.CrossRefPubMedGoogle Scholar
  26. 26.
    Bollen, K. A., & Bauldry, S. (2010). Model identification and computer algebra. Sociological Methods and Research,39(2), 127–156.  https://doi.org/10.1177/0049124110366238.CrossRefPubMedGoogle Scholar
  27. 27.
    Yoon, M., & Millsap, R. E. (2007). Detecting violations of factorial invariance using data-based specification searches: A Monte Carlo study. Structural Equation Modeling: A Multidisciplinary Journal,14(3), 435–463.  https://doi.org/10.1080/10705510701301677.CrossRefGoogle Scholar
  28. 28.
    Reise, S. P., Widaman, K. F., & Pugh, R. H. (1993). Confirmatory factor analysis and item response theory: Two approaches for exploring measurement invariance. Psychological Bulletin,114(3), 552–566.  https://doi.org/10.1037/0033-2909.114.3.552.CrossRefPubMedGoogle Scholar
  29. 29.
    Cheung, G. W., & Rensvold, R. B. (1999). Testing factorial invariance across groups: A reconceptualization and proposed new method. Journal of Management,25(1), 1–27.  https://doi.org/10.1016/S0149-2063(99)80001-4.CrossRefGoogle Scholar
  30. 30.
    Cheung, G. W., & Lau, R. S. (2012). A direct comparison approach for testing measurement invariance. Organizational Research Methods,15(2), 167–198.  https://doi.org/10.1177/1094428111421987.CrossRefGoogle Scholar
  31. 31.
    Jung, E., & Yoon, M. (2016). Comparisons of three empirical methods for partial factorial invariance: Forward, backward, and factor-ratio tests. Structural Equation Modeling: A Multidisciplinary Journal,23(4), 567–584.  https://doi.org/10.1080/10705511.2015.1138092.CrossRefGoogle Scholar
  32. 32.
    Whittaker, T. A., & Khojasteh, J. (2013). A comparison of methods to detect invariant reference indicators in structural equation modelling. International Journal of Quantitative Research in Education,1(4), 426–443.  https://doi.org/10.1504/ijqre.2013.058310.CrossRefGoogle Scholar
  33. 33.
    Gundy, C. M., Fayers, P. M., Groenvold, M., Petersen, M. A., Scott, N. W., Sprangers, M. A. G., et al. (2012). Comparing higher order models for the EORTC QLQ-C30. Quality of Life Research,21(9), 1607–1617.  https://doi.org/10.1007/s11136-011-0082-6.CrossRefPubMedGoogle Scholar
  34. 34.
    Giesinger, J. M., Kieffer, J. M., Fayers, P. M., Groenvold, M., Petersen, M. A., Scott, N. W., et al. (2016). Replication and validation of higher order models demonstrated that a summary score for the EORTC QLQ-C30 is robust. Journal of Clinical Epidemiology,69, 79–88.  https://doi.org/10.1016/j.jclinepi.2015.08.007.CrossRefPubMedGoogle Scholar
  35. 35.
    Fayers, P. M., & Hand, D. J. (1997). Factor analysis, causal indicators and quality of life. Quality of Life Research,6(2), 139–150.CrossRefGoogle Scholar
  36. 36.
    Boehmer, S., & Luszczynska, A. (2006). Two kinds of items in quality of life instruments: ‘Indicator and Causal Variables’ in the EORTC QLQ-C30. Quality of Life Research,15(1), 131.  https://doi.org/10.1007/s11136-005-8290-6.CrossRefPubMedGoogle Scholar
  37. 37.
    Oort, F. J., Visser, M. R. M., & Sprangers, M. A. G. (2005). An application of structural equation modeling to detect response shifts and true change in quality of life data from cancer patients undergoing invasive surgery. Quality of Life Research,14(3), 599–609.  https://doi.org/10.1007/s11136-004-0831-x.CrossRefPubMedGoogle Scholar
  38. 38.
    Rapkin, B. D., & Schwartz, C. E. (2004). Toward a theoretical model of quality-of-life appraisal: Implications of findings from studies of response shift. Health and Quality of Life Outcomes,2, 14.  https://doi.org/10.1186/1477-7525-2-14.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kathrin Sommer
    • 1
    Email author
  • Francesco Cottone
    • 1
  • Neil K. Aaronson
    • 2
  • Peter Fayers
    • 3
    • 4
  • Paola Fazi
    • 1
  • Gianantonio Rosti
    • 5
  • Emanuele Angelucci
    • 6
  • Gianluca Gaidano
    • 7
  • Adriano Venditti
    • 8
  • Maria Teresa Voso
    • 8
  • Michele Baccarani
    • 5
  • Marco Vignetti
    • 1
  • Fabio Efficace
    • 1
  1. 1.Data Center and Health Outcomes Research UnitItalian Group for Adult Hematologic Diseases (GIMEMA)RomeItaly
  2. 2.Division of Psychosocial Research and EpidemiologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
  3. 3.Division of Applied Health SciencesUniversity of AberdeenAberdeenUK
  4. 4.European Palliative Care Research Centre (PRC), Department of Cancer Research and Molecular Medicine, Faculty of MedicineNorwegian University of Science and Technology (NTNU)TrondheimNorway
  5. 5.Institute of Hematology “L. and A. Seràgnoli”, Department of Experimental, Diagnostic and Specialty Medicine, “S. Orsola-Malpighi” University HospitalUniversity of BolognaBolognaItaly
  6. 6.Ematologia e Centro TrapiantiIRCCS Ospedale Policlinico San MartinoGenoaItaly
  7. 7.Division of Hematology, Department of Translational MedicineUniversity of Eastern PiedmontNovaraItaly
  8. 8.Department of Biomedicine and PreventionUniversity of Rome Tor VergataRomeItaly

Personalised recommendations