Profiles of depressive symptoms and the association with anxiety and quality of life in breast cancer survivors: a latent profile analysis

  • Eun-Jung Shim
  • Donghee Jeong
  • Hyeong-Gon Moon
  • Dong-Young Noh
  • So-Youn Jung
  • Eunsook Lee
  • Zisun Kim
  • Hyun Jo Youn
  • Jihyoung Cho
  • Jung Eun LeeEmail author



The aim of this study was to examine profiles of depressive symptoms and the association with anxiety and quality of life (QOL) in breast cancer survivors.


A cross-sectional multicenter survey involving 5 hospitals in Korea was implemented between February 2015 and January 2017. A self-report survey included the Patient Health Questionnaire-9, Short Form 36, and State and Trait Anxiety Scale. Data from 347 patients were analyzed.


Latent profile analysis identified five profiles of depressive symptoms: (1) “no depression” (63.98%); (2) “mild depression with sleep problems” (16.43%); (3) “mild depression” (8.65%); (4) “moderate depression with anhedonia” (7.78%); and (5) “moderately severe depression” (3.17%). Results from Fisher’s exact test and analysis of variance (ANOVA) to examine whether sociodemographic and clinical characteristics distinguish the classes indicated that marital status, income and education as well as C-reactive protein distinguished a few classes. Multivariate analysis of covariance and analysis of covariance results indicated that both types of anxiety as well as several dimensions of QOL differed between the identified classes.


The current results suggest that although identified classes were characterized overall by severity of depression, a few classes also reflected pronounced individual symptom patterns, warranting tailored interventions for these symptom patterns, along with overall severity of depression.


Anxiety Breast cancer Depression Latent profile analysis Quality of life 



This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2014R1A2A2A01007794).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

11136_2019_2330_MOESM1_ESM.docx (37 kb)
Supplementary material 1 (DOCX 28 kb)


  1. 1.
    Kang, J. I., Sung, N. Y., Park, S. J., Lee, C. G., & Lee, B. O. (2014). The epidemiology of psychiatric disorders among women with breast cancer in South Korea: Analysis of national registry data. Psycho-Oncology, 23(1), 35–39.PubMedCrossRefGoogle Scholar
  2. 2.
    Hutter, N., Vogel, B., Alexander, T., Baumeister, H., Helmes, A., & Bengel, J. (2013). Are depression and anxiety determinants or indicators of quality of life in breast cancer patients? Psychology, Health & Medicine, 18(4), 412–419.CrossRefGoogle Scholar
  3. 3.
    Vodermaier, A., Linden, W., Rnic, K., Young, S. N., Ng, A., Ditsch, N., et al. (2014). Prospective associations of depression with survival: A population-based cohort study in patients with newly diagnosed breast cancer. Breast Cancer Research and Treatment, 143(2), 373–384.PubMedCrossRefGoogle Scholar
  4. 4.
    Andersen, B. L., DeRubeis, R. J., Berman, B. S., Gruman, J., Champion, V. L., Massie, M. J., et al. (2014). Screening, assessment, and care of anxiety and depressive symptoms in adults with cancer: An American Society of Clinical Oncology guideline adaptation. Journal of Clinical Oncology, 32(15), 1605–1619.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Fried, E. I., & Nesse, R. M. (2015). Depression is not a consistent syndrome: an investigation of unique symptom patterns in the STAR* D study. Journal of Affective Disorders, 172, 96–102.PubMedCrossRefGoogle Scholar
  6. 6.
    Fried, E. I., Nesse, R. M., Zivin, K., Guille, C., & Sen, S. (2014). Depression is more than the sum score of its parts: Individual DSM symptoms have different risk factors. Psychological Medicine, 44(10), 2067–2076.PubMedCrossRefGoogle Scholar
  7. 7.
    Fried, E. I., & Nesse, R. M. (2014). The impact of individual depressive symptoms on impairment of psychosocial functioning. PLoS ONE, 9(2), e90311.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Lux, V., & Kendler, K. (2010). Deconstructing major depression: A validation study of the DSM-IV symptomatic criteria. Psychological Medicine, 40(10), 1679–1690.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Silverstein, B., & Patel, P. (2011). Poor response to antidepressant medication of patients with depression accompanied by somatic symptomatology in the STAR* D Study. Psychiatry Research, 187(1), 121–124.PubMedCrossRefGoogle Scholar
  10. 10.
    Solomon, A., Haaga, D. A., & Arnow, B. A. (2001). Is clinical depression distinct from subthreshold depressive symptoms? A review of the continuity issue in depression research. The Journal of Nervous and Mental Disease, 189(8), 498–506.PubMedCrossRefGoogle Scholar
  11. 11.
    Deshields, T., Tibbs, T., Fan, M. Y., & Taylor, M. (2006). Differences in patterns of depression after treatment for breast cancer. Psycho-Oncology, 15(5), 398–406.PubMedCrossRefGoogle Scholar
  12. 12.
    Stanton, A. L., Wiley, J. F., Krull, J. L., Crespi, C. M., Hammen, C., Allen, J. J., et al. (2015). Depressive episodes, symptoms, and trajectories in women recently diagnosed with breast cancer. Breast Cancer Research and Treatment, 154(1), 105–115.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Zhu, L., Ranchor, A. V., van der Lee, M., Garssen, B., Sanderman, R., & Schroevers, M. J. (2016). Subtypes of depression in cancer patients: An empirically driven approach. Supportive Care in Cancer, 24(3), 1387–1396.PubMedCrossRefGoogle Scholar
  14. 14.
    Saracino, R. M., Cham, H., Rosenfeld, B., & Nelson, J. C. (2018). Latent profile analyses of depressive symptoms in younger and older oncology patients. Assessment. Scholar
  15. 15.
    Han, C., Jo, S. A., Kwak, J.-H., Pae, C.-U., Steffens, D., Jo, I., et al. (2008). Validation of the Patient Health Questionnaire-9 Korean version in the elderly population: The Ansan Geriatric study. Comprehensive Psychiatry, 49(2), 218–223.PubMedCrossRefGoogle Scholar
  16. 16.
    Kroenke, K., Spitzer, R. L., & Williams, J. B. (2001). The phq-9. Journal of General Internal Medicine, 16(9), 606–613.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Han, C.-W., Lee, E.-J., Iwaya, T., Kataoka, H., & Kohzuki, M. (2004). Development of the Korean version of Short-Form 36-Item Health Survey: Health related QOL of healthy elderly people and elderly patients in Korea. The Tohoku Journal of Experimental Medicine, 203(3), 189–194.PubMedCrossRefGoogle Scholar
  18. 18.
    Hahn, D.-W. L., Lee, C.-H., & Chon, K.-K. (1996). Korean adaptation of spielberger’s STAI (K-STAI). Korean Journal of Health Psychology, 1(1), 1–14.Google Scholar
  19. 19.
    Berlin, K. S., Williams, N. A., & Parra, G. R. (2014). An introduction to latent variable mixture modeling (part 1): Overview and cross-sectional latent class and latent profile analyses. Journal of Pediatric Psychology, 39(2), 174–187.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Lubke, G., & Muthén, B. O. (2007). Performance of factor mixture models as a function of model size, covariate effects, and class-specific parameters. Structural Equation Modeling, 14(1), 26–47.CrossRefGoogle Scholar
  21. 21.
    Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling, 14(4), 535–569.CrossRefGoogle Scholar
  22. 22.
    Van Loo, H. M., De Jonge, P., Romeijn, J.-W., Kessler, R. C., & Schoevers, R. A. (2012). Data-driven subtypes of major depressive disorder: A systematic review. BMC Medicine, 10(1), 156.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Savard, J., Simard, S., Blanchet, J., Ivers, H., & Morin, C. M. (2001). Prevalence, clinical characteristics, and risk factors for insomnia in the context of breast cancer. Sleep, 24(5), 583–590.PubMedCrossRefGoogle Scholar
  24. 24.
    Sharpley, C. F., Bitsika, V., & Christie, D. H. (2013). Do prostate cancer patients suffer more from depressed mood or anhedonia? Psycho-Oncology, 22(8), 1718–1723.PubMedCrossRefGoogle Scholar
  25. 25.
    Jeon, H. J., Peng, D., Chua, H. C., Srisurapanont, M., Fava, M., Bae, J.-N., et al. (2013). Melancholic features and hostility are associated with suicidality risk in Asian patients with major depressive disorder. Journal of Affective Disorders, 148(2–3), 368–374.PubMedCrossRefGoogle Scholar
  26. 26.
    Winer, E. S., Nadorff, M. R., Ellis, T. E., Allen, J. G., Herrera, S., & Salem, T. (2014). Anhedonia predicts suicidal ideation in a large psychiatric inpatient sample. Psychiatry Research, 218(1), 124–128.PubMedCrossRefGoogle Scholar
  27. 27.
    Qiu, J., Yang, M., Chen, W., Gao, X., Liu, S., Shi, S., et al. (2012). Prevalence and correlates of major depressive disorder in breast cancer survivors in Shanghai, China. Psycho-Oncology, 21(12), 1331–1337.PubMedCrossRefGoogle Scholar
  28. 28.
    Mehnert, A., & Koch, U. (2008). Psychological comorbidity and health-related quality of life and its association with awareness, utilization, and need for psychosocial support in a cancer register-based sample of long-term breast cancer survivors. Journal of Psychosomatic Research, 64(4), 383–391.PubMedCrossRefGoogle Scholar
  29. 29.
    Kim, S. H., Son, B. H., Hwang, S. Y., Han, W., Yang, J.-H., Lee, S., et al. (2008). Fatigue and depression in disease-free breast cancer survivors: Prevalence, correlates, and association with quality of life. Journal of Pain and Symptom Management, 35(6), 644–655.PubMedCrossRefGoogle Scholar
  30. 30.
    Felger, J. C., Li, Z., Haroon, E., Woolwine, B. J., Jung, M. Y., Hu, X., et al. (2016). Inflammation is associated with decreased functional connectivity within corticostriatal reward circuitry in depression. Molecular Psychiatry, 21(10), 1358.PubMedCrossRefGoogle Scholar
  31. 31.
    Pierce, B. L., Ballard-Barbash, R., Bernstein, L., Baumgartner, R. N., Neuhouser, M. L., Wener, M. H., et al. (2009). Elevated biomarkers of inflammation are associated with reduced survival among breast cancer patients. Journal of Clinical Oncology, 27(21), 3437.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Yancik, R., Wesley, M. N., Ries, L. A., Havlik, R. J., Edwards, B. K., & Yates, J. W. (2001). Effect of age and comorbidity in postmenopausal breast cancer patients aged 55 years and older. JAMA, 285(7), 885–892.CrossRefGoogle Scholar
  33. 33.
    Kaptoge, S., Di Angelantonio, E., Pennells, L., Wood, A. M., White, I. R., Gao, P., et al. (2012). C-reactive protein, fibrinogen, and cardiovascular disease prediction. New England Journal of Medicine, 367(14), 1310–1320.PubMedCrossRefGoogle Scholar
  34. 34.
    Pelle, A. J., Pedersen, S. S., Erdman, R. A., Kazemier, M., Spiering, M., van Domburg, R. T., et al. (2011). Anhedonia is associated with poor health status and more somatic and cognitive symptoms in patients with coronary artery disease. Quality of Life Research, 20(5), 643–651.PubMedCrossRefGoogle Scholar
  35. 35.
    Kim, J. M., Jang, J. E., Stewart, R., Kim, S. Y., Kim, S. W., Kang, H. J., et al. (2013). Determinants of suicidal ideation in patients with breast cancer. Psycho-Oncology, 22(12), 2848–2856.PubMedCrossRefGoogle Scholar
  36. 36.
    Groenvold, M., Petersen, M. A., Idler, E., Bjorner, J. B., Fayers, P. M., & Mouridsen, H. T. (2007). Psychological distress and fatigue predicted recurrence and survival in primary breast cancer patients. Breast Cancer Research and Treatment, 105(2), 209–219.PubMedCrossRefGoogle Scholar
  37. 37.
    Brunault, P., Champagne, A. L., Huguet, G., Suzanne, I., Senon, J. L., Body, G., et al. (2016). Major depressive disorder, personality disorders, and coping strategies are independent risk factors for lower quality of life in non-metastatic breast cancer patients. Psycho-Oncology, 25(5), 513–520.PubMedCrossRefGoogle Scholar
  38. 38.
    Brown, L. F., Kroenke, K., Theobald, D. E., & Wu, J. (2011). Comparison of SF-36 vitality scale and fatigue symptom inventory in assessing cancer-related fatigue. Supportive Care in Cancer, 19(8), 1255–1259.PubMedCrossRefGoogle Scholar
  39. 39.
    Lengacher, C. A., Reich, R. R., Post-White, J., Moscoso, M., Shelton, M. M., Barta, M., et al. (2012). Mindfulness based stress reduction in post-treatment breast cancer patients: An examination of symptoms and symptom clusters. Journal of Behavioral Medicine, 35(1), 86–94.PubMedCrossRefGoogle Scholar
  40. 40.
    Berger, A. M., & Mitchell, S. A. (2008). Modifying cancer-related fatigue by optimizing sleep quality. Journal of the National Comprehensive Cancer Network, 6(1), 3–13.PubMedCrossRefGoogle Scholar
  41. 41.
    Choi, Y.-N., Kim, Y.-A., Yun, Y. H., Kim, S., Bae, J.-M., Kim, Y.-W., et al. (2014). Suicide ideation in stomach cancer survivors and possible risk factors. Supportive Care in Cancer, 22(2), 331–337.PubMedCrossRefGoogle Scholar
  42. 42.
    Reich, R. R., Lengacher, C. A., Alinat, C. B., Kip, K. E., Paterson, C., Ramesar, S., et al. (2017). Mindfulness-based stress reduction in post-treatment breast cancer patients: Immediate and sustained effects across multiple symptom clusters. Journal of Pain and Symptom Management, 53(1), 85–95.PubMedCrossRefGoogle Scholar
  43. 43.
    Hipp, J. R., & Bauer, D. J. (2006). Local solutions in the estimation of growth mixture models. Psychological Methods, 11(1), 36.PubMedCrossRefGoogle Scholar
  44. 44.
    Gueorguieva, R. (2017). Statistical methods in psychiatry and related fields: Longitudinal, clustered, and other repeated measures data. London: Chapman and Hall/CRC.Google Scholar
  45. 45.
    Garland, S. N., Johnson, J. A., Savard, J., Gehrman, P., Perlis, M., Carlson, L., et al. (2014). Sleeping well with cancer: A systematic review of cognitive behavioral therapy for insomnia in cancer patients. Neuropsychiatric Disease and Treatment, 10, 1113.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Andersen, S. R., Würtzen, H., Steding-Jessen, M., Christensen, J., Andersen, K. K., Flyger, H., et al. (2013). Effect of mindfulness-based stress reduction on sleep quality: Results of a randomized trial among Danish breast cancer patients. Acta Oncologica, 52(2), 336–344.PubMedCrossRefGoogle Scholar
  47. 47.
    Hopko, D. R., Armento, M. E., Robertson, S., Ryba, M. M., Carvalho, J. P., Colman, L. K., et al. (2011). Brief behavioral activation and problem-solving therapy for depressed breast cancer patients: Randomized trial. Journal of Consulting and Clinical Psychology, 79(6), 834.PubMedCrossRefGoogle Scholar
  48. 48.
    Sharpley, C. F., & Bitsika, V. (2013). Differences in neurobiological pathways of four “clinical content” subtypes of depression. Behavioural Brain Research, 256, 368–376.PubMedCrossRefGoogle Scholar
  49. 49.
    Fairey, A. S., Courneya, K. S., Field, C. J., Bell, G. J., Jones, L. W., Martin, B. S., et al. (2005). Effect of exercise training on C-reactive protein in postmenopausal breast cancer survivors: A randomized controlled trial. Brain, Behavior, and Immunity, 19(5), 381–388.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PsychologyPusan National UniversityBusanKorea
  2. 2.Department of Surgery & Cancer Research InstituteSeoul National University College of MedicineSeoulKorea
  3. 3.Breast Cancer Center, National Cancer CenterGoyangKorea
  4. 4.Department of SurgerySoonchunhyang University Bucheon HospitalBucheonKorea
  5. 5.Department of SurgeryChonbuk National University Medical SchoolJeonjuKorea
  6. 6.Department of SurgeryKeimyung University School of MedicineDaeguKorea
  7. 7.Department of Food and NutritionSeoul National UniversitySeoulKorea
  8. 8.Research Institute of Human EcologySeoul National UniversitySeoulKorea

Personalised recommendations