Advertisement

The influence of the Pilates method on quality of life and bone remodelling in older women: a controlled study

  • Nathalia Regina Sabatini Gandolfi
  • Jose Eduardo Corrente
  • Alberto De Vitta
  • Loraine Gollino
  • Gláucia Maria Ferreira da Silva MazetoEmail author
Article

Abstract

Purpose

The objective of this study was to evaluate the effects of the Pilates method on quality of life and bone remodeling markers in a group of older women.

Methods

A longitudinal prospective study with intervention was performed on 40 women aged over 60 years; they were divided into two groups: one submitted to a 50-min Pilates exercise session once a week for 20 weeks (Pilates), and the other was not (Control). Both groups were compared for quality of life using the Medical Outcomes Study 36, and for bone-specific alkaline phosphatase (BSAP) and Type 1 collagen C-telopeptide (CTx) bone remodeling markers.

Results

The Pilates group presented improvement in the quality of life evaluation scores: physical functioning (67.50 ± 18.88 × 86.25 ± 9.58; p = 0.0232), and physical component summary (65.00 ± 14.39 × 79.70 ± 3.83; p = 0.0220). The Pilates group also presented higher scores than that of Controls after the exercise program: physical functioning (86.25 ± 9.58 × 55.50 ± 20.83, p = 0.0003), physical role (100.00 ± 0.00 × 41.25 ± 46.79, p = 0.0009), emotional role (100.00 ± 0.00 × 48.33 ± 50.12, p = 0.0046), vitality (82.50 ± 14.28 × 60.25 ± 21.43, p = 0.011), physical component summary (79.70 ± 3.83 × 54.90 ± 15.05, p < 0.0001), and emotional component summary (74.10 ± 8.37 × 54.18 ± 22.55, p = 0.0111). No changes were noted in bone remodeling markers [CTx (0.39 ± 0.26 × 0.38 ± 0.22 ng/mL) and BSAP (10.73 ± 2.40 × 11.01 ± 3.56 μg/L)] and did not differ from the Control group both before (CTx: 0.39 ± 0.26 × 0.37 ± 0.17 ng/mL; BSAP: 10.73 ± 2.40 × 10.58 ± 3.49 μg/L; p > 0.05) and after exercise (CTx: 0.38 ± 0.22 × 0.38 ± 0.22 ng/mL; BSAP: 11.01 ± 3.56 × 9.85 ± 3.12 μg/L; p > 0.05).

Conclusion

The group of women submitted to Pilates presented improved quality of life but without changes in bone remodeling.

Keywords

Aging Bone remodeling Exercise movement techniques Exercise therapy Quality of life 

Notes

Funding

This project was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP (Grant for research; Process Number 2011/14448-8), and by the National Council for Scientific and Technological Development – CNPq (Master’s degree).

Compliance with ethical standards

Conflict of interest

All the authors declared that they have no conflict of interest.

Ethical approval

All procedures performed in this study were in accordance WITH the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Instituto Brasileiro de Geografia e Estatística (IBGE). (2011). Sinopse do Senso Demográfico de 2010. Retrieved 5 April, 2019, from, https://ww2.ibge.gov.br/home/presidencia/noticias/imprensa/ppts/0000000402.pdf.
  2. 2.
    Maltais, M. L., Desroches, J., & Dionne, I. J. (2009). Changes in muscle mass and strength after menopause. Journal of Musculoskeletal and Neuronal Interactions, 9(4), 186–197.Google Scholar
  3. 3.
    Ware, J. E., & Sherbourne, C. D. (1992). The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Medical Care, 30(6), 473–483.CrossRefGoogle Scholar
  4. 4.
    Wilson, S., Sharp, C. A., & Davie, M. W. (2015). Health-related quality of life in women referred for bone density assessment: Relationships with bone mineral density, fracture and co-morbidity. Quality of Life Research, 24(5), 1235–1243.CrossRefGoogle Scholar
  5. 5.
    Tolomio, S., Ermolao, A., Travain, G., & Zaccaria, M. (2008). Short-term adapted physical activity program improves bone quality in osteopenic/osteoporotic postmenopausal women. Journal of Physical Activity & Health, 5(6), 844–853.CrossRefGoogle Scholar
  6. 6.
    Kohrt, W. M., Bloomfield, S. A., Little, K. D., Nelson, M. E., & Yingling, V. R. (2004). Physical activity and bone health. Medicine & Science in Sport & Exercise, 36(11), 1985–1996.CrossRefGoogle Scholar
  7. 7.
    Todd, J. A., & Robinson, R. J. (2003). Osteoporosis and exercise. Postgraduate Medical Journal, 79(932), 320–323.CrossRefGoogle Scholar
  8. 8.
    Gallagher, S. P., Kryzanowska, R., & Speleotis, S. (1999). The Pilates method of body conditioning: Introduction to the core exercises. Philadelphia: Bainbridge Books.Google Scholar
  9. 9.
    Kopitzke, R. (2007). Pilates: A fitness tool that transcends the ages. Rehab Management, 20(6), 30–31.Google Scholar
  10. 10.
    Camarão, T. (2004). Pilates no Brasil: Corpo e movimento. Rio de Janeiro: Elsevier.Google Scholar
  11. 11.
    Angin, E., Erden, Z., & Can, F. (2015). The effects of clinical Pilates exercises on bone mineral density, physical performance and quality of life of women with postmenopausal osteoporosis. Journal of Back and Musculoskeletal Rehabilitation, 28(4), 849–858.CrossRefGoogle Scholar
  12. 12.
    Cancela, J. M., Mollinedo Cardalda, I., Ayán, C., & de Oliveira, I. M. (2018). Feasibility and efficacy of Mat Pilates on people with mild-to-moderate Parkinson’s disease: A preliminary study. Rejuvenation Research, 21(2), 109–116.CrossRefGoogle Scholar
  13. 13.
    Küçükçakir, N., Altan, L., & Korkmaz, N. (2013). Effects of Pilates exercises on pain, functional status and quality of life in women with postmenopausal osteoporosis. Journal of Bodywork and Movement Therapies, 17(2), 204–211.CrossRefGoogle Scholar
  14. 14.
    Camacho, P. M., Petak, S. M., Binkley, N., Clarke, B. L., Harris, S. T., Hurley, D. L., et al. (2016). American Association of Clinical Endocrinologists and American College of Endocrinology Clinical Practice Guidelines for the Diagnosis and Treatment of Postmenopausal Osteoporosis – 2016. Endocrine Practice, 22(Suppl 4), 1–42.CrossRefGoogle Scholar
  15. 15.
    Pardini, R., Matsudo, S. M. M., Matsudo, V. K. R., Araujo, T., Andrade, E., & Braggion, G. (1997). Validation of the international physical activity questionnaire (IPAQ): Pilot study in Brazilian young adults. Medicine and Science in Sports and Exercise, 29, s5–s9.Google Scholar
  16. 16.
    Ciconelli, R. M., Ferraz, M. B., Santos, W., Mainão, I., & Quaresma, M. R. (1999). Tradução para a língua portuguesa e validação do questionário genérico de avaliação de qualidade de vida SF-36 (Brasil SF-36). Revista Brasileira de Reumatologia, 39(3), 143–150.Google Scholar
  17. 17.
    Cruz, L. N., Fleck, M. P., Oliveira, M. R., Camey, S. A., Hoffmann, J. F., Bagattini, A. M., et al. (2013). Health-related quality of life in Brazil: Normative data for the SF-36 in a general population samplein the south of the country. Ciência & Saúde Coletiva, 18(7), 1911–1921.CrossRefGoogle Scholar
  18. 18.
    Curi Pérez, V. S., Haas, N. A., & Wolff, S. S. (2014). Analysis of activities in the daily lives of older adults exposed to the Pilates Method. Journal of Bodywork and Movement Therapies, 18(3), 326–331.CrossRefGoogle Scholar
  19. 19.
    Dallanezi, G., Nahas, E. A., Freire, B. F., Nahas-Neto, J., Corrente, J. E., & Mazeto, G. M. (2011). Quality of life of women with low bone mass in postmenopause. Revista Brasileira de Ginecologia e Obstetrícia, 33(3), 133–138.CrossRefGoogle Scholar
  20. 20.
    Oksuz, S., & Unal, E. (2017). The effect of the clinical pilates exercises on kinesiophobia and other symptoms related to osteoporosis: Randomised controlled trial. Complementary Therapies in Clinical Practice, 26, 68–72.CrossRefGoogle Scholar
  21. 21.
    Liposcki, D. B., da Silva Nagata, I. F., Silvano, G. A., Zanella, K., & Schneider, R. H. (2019). Influence of a Pilates exercise program on the quality of life of sedentary elderly people: A randomized clinical trial. Journal of Bodywork and Movement Therapies, 23(2), 390–393.CrossRefGoogle Scholar
  22. 22.
    Ritson, F., & Scott, S. (1996). Physiotherapy for osteoporosis: A pilot study comparing practice and Knowledge in Scotland and Sweden. Physiotherapy, 82(7), 390–394.CrossRefGoogle Scholar
  23. 23.
    Hilton, P. S., Rector, R. S., & Thomas, T. R. (2006). Weight-bearing, aerobic exercise increases markers of bone formation during short-term weight loss in overweight and obese men and women. Metabolism, Clinical and Experimental, 55(12), 1616–1618.CrossRefGoogle Scholar
  24. 24.
    Kitareewan, W., Boonhong, J., Janchai, S., & Aksaranugraha, S. (2011). Effects of the treadmill walking exercise on the biochemical bone markers. Journal of the Medical Association of Thailand, 94(Suppl 5), S10–16.Google Scholar
  25. 25.
    Vincent, K. R., & Braith, R. W. (2002). Resistance exercise and bone turnover in elderly men and women. Medicine and Science in Sports and Exercise, 34(1), 17–23.CrossRefGoogle Scholar
  26. 26.
    Kerr, D., Ackland, T., Maslen, B., Morton, A., & Prince, R. (2001). Resistance training over 2 years increase bone mass in calcium-replete in postmenopausal women. Journal of Bone and Mineral Research, 16(1), 170–181.CrossRefGoogle Scholar
  27. 27.
    Shen, C. L., Chyu, M. C., Yeh, J. K., Zhang, Y., Pence, B. C., Felton, C. K., et al. (2012). Effect of green tea and Tai Chi on bone health in postmenopausal osteopenic women: A 6-month randomized placebo-controlled trial. Osteoporosis International, 23(5), 1541–1552.CrossRefGoogle Scholar
  28. 28.
    Moreira, L. D., Fronza, F. C., Dos Santos, R. N., Zach, P. L., Kunii, I. S., Hayashi, L. F., et al. (2014). The benefits of a high-intensity aquatic exercise program (HydrOS) for bone metabolism and bone mass of postmenopausal women. Journal of Bone and Mineral Metabolism, 32(4), 411–419.Google Scholar
  29. 29.
    Weber-Rajek, M., Mieszkowski, J., Niespodziński, B., & Ciechanowska, K. (2015). Whole-body vibration exercise in postmenopausal osteoporosis. Przegla̜d menopauzalny, 14(1), 41–77.Google Scholar
  30. 30.
    Pruitt, L. A., Jackson, R. D., Bartels, R. L., & Lehnhard, H. J. (1992). Weight training effects on bone mineral density in early postmenopausal women. Journal of Bone and Mineral Research, 7(2), 179–185.CrossRefGoogle Scholar
  31. 31.
    Maimoun, L., & Sutan, C. (2011). Effects of physical activity on bone remodeling. Metabolism, Clinical and Experimental, 60(3), 373–388.CrossRefGoogle Scholar
  32. 32.
    Bandeira, F., Griz, L., Freese, E., Lima, D. C., Thé, A. C., Diniz, E. T., et al. (2010). Vitamin D deficiency and its relationship with bone mineral density among postmenopausal women living in the tropics. Arquivos Brasileiros de Endocrinologia e Metabologia, 54(2), 227–232.CrossRefGoogle Scholar
  33. 33.
    Scalco, R., Premaor, M. O., Fröehlich, P. E., & Furlanetto, T. W. (2008). High prevalence of hypovitaminosis D and secondary hyperparathyroidism in elders living in nonprofit homes in South Brazil. Endocrine, 33(1), 95–100.CrossRefGoogle Scholar
  34. 34.
    Russo, L. A., Gregório, L. H., Lacativa, P. G., & Marinheiro, L. P. (2009). Concentration of 25-hydroxyvitamin D in postmenopausal women with low bone mineral density. Arquivos Brasileiros de Endocrinologia e Metabologia, 53(9), 1079–1087.CrossRefGoogle Scholar
  35. 35.
    Saraiva, G. L., Cendoroglo, M. S., Ramos, L. R., Araújo, L. M., Vieira, J. G., Maeda, S. S., et al. (2007). Prevalence of vitamin D deficiency, insufficiency and secondary hyperparathyroidism in the elderly inpatients and living in the community of the city of São Paulo, Brazil. Arquivos Brasileiros de Endocrinologia e Metabologia, 51(3), 437–442.CrossRefGoogle Scholar
  36. 36.
    Dawson-Hughes, B., Heaney, R. P., Holick, M. F., Lips, P., Meunier, P. J., & Vieth, R. (2005). Estimated of optimal vitamin D status. Osteoporosis International, 16(7), 713–716.CrossRefGoogle Scholar
  37. 37.
    Maeda, S. S., Borba, V. Z., Camargo, M. B., Silva, D. M., Borges, J. L., Bandeira, F., et al. (2014). Recommendations of the Brazilian Society of Endocrinology and Metabology (SBEM) for the diagnosis and treatment of hypovitaminosis D. Arquivos Brasileiros de Endocrinologia e Metabologia, 58(5), 411–433.CrossRefGoogle Scholar
  38. 38.
    Holick, M. F. (2017). The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Reviews in Endocrine & Metabolic Disorders, 18(2), 153–165.CrossRefGoogle Scholar
  39. 39.
    Chao, Y. S., Ekwaru, J. P., Ohinmaa, A., Griener, G., & Veugelers, P. J. (2014). Vitamin D and health-related quality of life in a community sample of older Canadians. Quality of Life Research, 23(9), 2569–2575.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Internal Medicine Department, Botucatu Medical SchoolSao Paulo State University – UnespBotucatuBrazil
  2. 2.Biostatistics Department, Institute of BiosciencesSao Paulo State University – UnespBotucatuBrazil
  3. 3.Universidade Anhanguera - UNIDERPCampo GrandeBrazil

Personalised recommendations