Advertisement

Prediction of Oswestry Disability Index (ODI) using PROMIS-29 in a national sample of lumbar spine surgery patients

  • Jacquelyn S. Pennings
  • Clinton J. Devin
  • Inamullah Khan
  • Mohamad Bydon
  • Anthony L. Asher
  • Kristin R. ArcherEmail author
Article

Abstract

Purpose

The primary purpose was to examine the measurement properties of the PROMIS-29 to better understand its use in patients undergoing spine surgery. A secondary objective was to calculate a predictive equation between PROMIS-29 and ODI, to allow clinicians and researchers to determine a predicted ODI score based on PROMIS short form scores.

Methods

719 patients with PROMIS v2.0 and ODI responses were queried from the quality outcomes database. Validity was assessed using coefficient omega, ceiling/floor effects, and confirmatory factor analysis. Multivariable regression predicting ODI scores from PROMIS-29 domains was used to create a predictive equation. Predicted ODI scores were plotted against ODI scores to determine how well PROMIS-29 domains predicted ODI.

Results

Results showed good reliability and validity of PROMIS-29 in patients undergoing lumbar spine surgery: convergent and discriminant validity, low floor/ceiling effects, and unidimensional domains. The conversion equation used 6 PROMIS-29 domains (ODI% =  37.847− 1.475*[PFraw] + 1.842*[PAINraw] + 0.557*[SDraw] − 0.642*[SRraw] + 0.478*[PIraw] + 0.295*[DEPraw]). Correlation between the predicted and actual ODI scores was R = 0.88, R2 = 0.78, suggesting that the equation predicted ODI scores that are strongly correlated with actual ODI scores.

Conclusions

Good measurement properties support the use of PROMIS-29 in spine surgery patients. Findings suggest accurate ODI scores can be derived from PROMIS-29 domains. Clinicians who want to move from ODI to PROMIS-29 can use this equation to obtain estimated ODI scores when only collecting PROMIS-29. These results support the idea that PROMIS-29 domains have the potential to replace disease-specific traditional PROMs.

Keywords

PROMIS-29 Oswestry Disability Index Spine surgery Patient-reported outcomes 

Notes

Acknowledgements

The study was funded by NeuroPoint Alliance, Inc.

Supplementary material

11136_2019_2223_MOESM1_ESM.docx (37 kb)
Supplementary material 1 (DOCX 37 kb)

References

  1. 1.
    DeVine, J., Norvell, D. C., Ecker, E., Fourney, D. R., Vaccaro, A., Wang, J., et al. (2011). Evaluating the correlation and responsiveness of patient-reported pain with function and quality-of-life outcomes after spine surgery. Spine, 36(21 Suppl), S69–S74.  https://doi.org/10.1097/brs.0b013e31822ef6de.Google Scholar
  2. 2.
    Chiarotto, A., Ostelo, R. W., Turk, D. C., Buchbinder, R., & Boers, M. (2017). Core outcome sets for research and clinical practice. Brazilian Journal of Physical Therapy, 21(2), 77–84.  https://doi.org/10.1016/j.bjpt.2017.03.001.Google Scholar
  3. 3.
    Chiarotto, A., Deyo, R. A., Terwee, C. B., Boers, M., Buchbinder, R., Corbin, T. P., et al. (2015). Core outcome domains for clinical trials in non-specific low back pain. European Spine Journal, 24(6), 1127–1142.  https://doi.org/10.1007/s00586-015-3892-3.Google Scholar
  4. 4.
    Chiarotto, A., Terwee, C. B., & Ostelo, R. W. (2016). Choosing the right outcome measurement instruments for patients with low back pain. Best Practice & Research Clinical Rheumatology, 30(6), 1003–1020.  https://doi.org/10.1016/j.berh.2017.07.001.Google Scholar
  5. 5.
    Davidson, M., & Keating, J. L. (2002). A comparison of five low back disability questionnaires: reliability and responsiveness. Physical Therapy, 82(1), 8–24.Google Scholar
  6. 6.
    Goldsmith, E. S., Taylor, B. C., Greer, N., Murdoch, M., MacDonald, R., McKenzie, L., et al. (2018). Focused evidence review: Psychometric properties of patient-reported outcome measures for chronic musculoskeletal Pain. Journal of General Internal Medicine, 33(Suppl 1), 61–70.  https://doi.org/10.1007/s11606-018-4327-8.Google Scholar
  7. 7.
    Grotle, M., Brox, J. I., & Vollestad, N. K. (2005). Functional status and disability questionnaires: What do they assess? A systematic review of back-specific outcome questionnaires. Spine, 30(1), 130–140.  https://doi.org/10.1097/01.brs.0000149184.16509.73.Google Scholar
  8. 8.
    Stokes, O. M., Cole, A. A., Breakwell, L. M., Lloyd, A. J., Leonard, C. M., & Grevitt, M. (2017). Do we have the right PROMs for measuring outcomes in lumbar spinal surgery? European Spine Journal, 26(3), 816–824.  https://doi.org/10.1007/s00586-016-4938-x.Google Scholar
  9. 9.
    McCormick, J. D., Werner, B. C., & Shimer, A. L. (2013). Patient-reported outcome measures in spine surgery. Journal of the American Academy of Orthopaedic Surgeons, 21(2), 99–107.  https://doi.org/10.5435/JAAOS-21-02-99.Google Scholar
  10. 10.
    Ferrer, M., Pellise, F., Escudero, O., Alvarez, L., Pont, A., Alonso, J., et al. (2006). Validation of a minimum outcome core set in the evaluation of patients with back pain. Spine, 31(12), 1372–1379.  https://doi.org/10.1097/01.brs.0000218477.53318.bc. discussion 1380.Google Scholar
  11. 11.
    McGirt, M. J., Speroff, T., Dittus, R. S., Harrell, F. E., Jr., & Asher, A. L. (2013). The National Neurosurgery Quality and Outcomes Database (N2QOD): General overview and pilot-year project description. Neurosurgical Focus, 34(1), E6.  https://doi.org/10.3171/2012.10.FOCUS12297.Google Scholar
  12. 12.
    Daltroy, L. H., Cats-Baril, W. L., Katz, J. N., Fossel, A. H., & Liang, M. H. (1996). The North American spine society lumbar spine outcome assessment instrument: Reliability and validity tests. Spine, 21(6), 741–749.Google Scholar
  13. 13.
    van Hooff, M. L., Jacobs, W. C., Willems, P. C., Wouters, M. W., de Kleuver, M., Peul, W. C., et al. (2015). Evidence and practice in spine registries. Acta Orthopaedica, 86(5), 534–544.  https://doi.org/10.3109/17453674.2015.1043174.Google Scholar
  14. 14.
    Clement, R. C., Welander, A., Stowell, C., Cha, T. D., Chen, J. L., Davies, M., et al. (2015). A proposed set of metrics for standardized outcome reporting in the management of low back pain. Acta Orthopaedica, 86(5), 523–533.  https://doi.org/10.3109/17453674.2015.1036696.Google Scholar
  15. 15.
    Forsth, P., Michaelsson, K., & Sanden, B. (2013). Does fusion improve the outcome after decompressive surgery for lumbar spinal stenosis? A two-year follow-up study involving 5390 patients. The Bone & Joint Journal, 95(7), 960–965.  https://doi.org/10.1302/0301-620x.95b7.30776.Google Scholar
  16. 16.
    Cleland, J. A., Whitman, J. M., Houser, J. L., Wainner, R. S., & Childs, J. D. (2012). Psychometric properties of selected tests in patients with lumbar spinal stenosis. The Spine Journal, 12(10), 921–931.  https://doi.org/10.1016/j.spinee.2012.05.004.Google Scholar
  17. 17.
    Hill, J. C., Dunn, K. M., Lewis, M., Mullis, R., Main, C. J., Foster, N. E., et al. (2008). A primary care back pain screening tool: Identifying patient subgroups for initial treatment. Arthritis Care & Research, 59(5), 632–641.  https://doi.org/10.1002/art.23563.Google Scholar
  18. 18.
    Copay, A. G., Glassman, S. D., Subach, B. R., Berven, S., Schuler, T. C., & Carreon, L. Y. (2008). Minimum clinically important difference in lumbar spine surgery patients: A choice of methods using the Oswestry Disability Index, Medical Outcomes Study questionnaire Short Form 36, and pain scales. The Spine Journal, 8(6), 968–974.  https://doi.org/10.1016/j.spinee.2007.11.006.Google Scholar
  19. 19.
    van Hooff, M. L., Mannion, A. F., Staub, L. P., Ostelo, R. W., & Fairbank, J. C. (2016). Determination of the Oswestry Disability Index score equivalent to a “satisfactory symptom state” in patients undergoing surgery for degenerative disorders of the lumbar spine-a Spine Tango registry-based study. The Spine Journal, 16(10), 1221–1230.  https://doi.org/10.1016/j.spinee.2016.06.010.Google Scholar
  20. 20.
    Niskanen, R. O. (2002). The oswestry low back pain disability questionnaire. A two-year follow-up of spine surgery patients. Scandinavian Journal of Surgery, 91(2), 208–211.  https://doi.org/10.1177/145749690209100214.Google Scholar
  21. 21.
    McGirt, M. J., Bydon, M., Archer, K. R., Devin, C. J., Chotai, S., Parker, S. L., et al. (2017). An analysis from the Quality Outcomes Database, Part 1. Disability, quality of life, and pain outcomes following lumbar spine surgery: Predicting likely individual patient outcomes for shared decision-making. Journal of Neurosurgery, 27(4), 357–369.  https://doi.org/10.3171/2016.11.spine16526.Google Scholar
  22. 22.
    Gabel, C. P., Cuesta-Vargas, A., Qian, M., Vengust, R., Berlemann, U., Aghayev, E., et al. (2017). The Oswestry Disability Index, confirmatory factor analysis in a sample of 35,263 verifies a one-factor structure but practicality issues remain. European Spine Journal, 26(8), 2007–2013.  https://doi.org/10.1007/s00586-017-5179-3.Google Scholar
  23. 23.
    Saltychev, M., Mattie, R., McCormick, Z., Barlund, E., & Laimi, K. (2017). Psychometric properties of the Oswestry Disability Index. International Journal of Rehabilitation Research, 40(3), 202–208.  https://doi.org/10.1097/MRR.0000000000000226.Google Scholar
  24. 24.
    Walsh, T. L., Hanscom, B., Lurie, J. D., & Weinstein, J. N. (2003). Is a condition-specific instrument for patients with low back pain/leg symptoms really necessary? The responsiveness of the Oswestry Disability Index, MODEMS, and the SF-36. Spine, 28(6), 607–615.  https://doi.org/10.1097/01.brs.0000050654.97387.df.Google Scholar
  25. 25.
    Chiarotto, A., Ostelo, R. W., Boers, M., & Terwee, C. B. (2018). A systematic review highlights the need to investigate the content validity of patient-reported outcome measures for physical functioning in patients with low back pain. Journal of Clinical Epidemiology, 95, 73–93.  https://doi.org/10.1016/j.jclinepi.2017.11.005.Google Scholar
  26. 26.
    Deyo, R. A., Dworkin, S. F., Amtmann, D., Andersson, G., Borenstein, D., Carragee, E., et al. (2014). Report of the NIH Task Force on research standards for chronic low back pain. Physical Therapy, 15(8), 1249–1267.  https://doi.org/10.1111/pme.12538.Google Scholar
  27. 27.
    Shaw, B. E., Syrjala, K. L., Onstad, L. E., Chow, E. J., Flowers, M. E., Jim, H., et al. (2018). PROMIS measures can be used to assess symptoms and function in long-term hematopoietic cell transplantation survivors. Cancer, 124(4), 841–849.  https://doi.org/10.1002/cncr.31089.Google Scholar
  28. 28.
    Hung, M., Saltzman, C. L., Kendall, R., Bounsanga, J., Voss, M. W., Lawrence, B., et al. (2018). What are the MCIDs for PROMIS, NDI, and ODI instruments among patients with spinal conditions? Clinical Orthopaedics and Related Research, 476(10), 2027–2036.  https://doi.org/10.1097/CORR.0000000000000419.Google Scholar
  29. 29.
    Amtmann, D., Kim, J., Chung, H., Askew, R. L., Park, R., & Cook, K. F. (2016). Minimally important differences for patient reported outcomes measurement information system pain interference for individuals with back pain. Journal of Pain Research, 9, 251–255.  https://doi.org/10.2147/JPR.S93391.Google Scholar
  30. 30.
    Papuga, M. O., Mesfin, A., Molinari, R., & Rubery, P. T. (2016). Correlation of PROMIS physical function and pain CAT instruments with Oswestry Disability Index and neck disability index in spine patients. Spine, 41(14), 1153–1159.  https://doi.org/10.1097/brs.0000000000001518.Google Scholar
  31. 31.
    Hung, M., Baumhauer, J. F., Latt, L. D., Saltzman, C. L., SooHoo, N. F., Hunt, K. J., et al. (2013). Validation of PROMIS (R) Physical Function computerized adaptive tests for orthopaedic foot and ankle outcome research. Clinical Orthopaedics and Related Research, 471(11), 3466–3474.  https://doi.org/10.1007/s11999-013-3097-1.Google Scholar
  32. 32.
    Haws, B. E., Khechen, B., Guntin, J. A., Cardinal, K. L., Bohl, D. D., & Singh, K. (2018). Validity of PROMIS in minimally invasive transforaminal lumbar interbody fusion: a preliminary evaluation. Journal of Neurosurgery, 29(1), 28–33.  https://doi.org/10.3171/2017.11.SPINE17989.Google Scholar
  33. 33.
    Brodke, D. S., Lawrence, B. D., Ryan Spiker, W., Neese, A., & Hung, M. (2014). Converting ODI or SF-36 physical function domain scores to a PROMIS PF score. The Spine Journal, 14(11), S50.  https://doi.org/10.1016/j.spinee.2014.08.131.Google Scholar
  34. 34.
    Mokkink, L. B., Terwee, C. B., Patrick, D. L., Alonso, J., Stratford, P. W., Knol, D. L., et al. (2010). The COSMIN checklist for assessing the methodological quality of studies on measurement properties of health status measurement instruments: an international Delphi study. Quality of Life Research, 19(4), 539–549.  https://doi.org/10.1007/s11136-010-9606-8.Google Scholar
  35. 35.
    Asher, A. L., McCormick, P. C., Selden, N. R., Ghogawala, Z., & McGirt, M. J. (2013). The National Neurosurgery Quality and Outcomes Database and NeuroPoint Alliance: rationale, development, and implementation. Neurosurgical Focus, 34(1), E2.  https://doi.org/10.3171/2012.10.FOCUS12311.Google Scholar
  36. 36.
    Asher, A. L., Speroff, T., Dittus, R. S., Parker, S. L., Davies, J. M., Selden, N., et al. (2014). The National Neurosurgery Quality and Outcomes Database (N2QOD): a collaborative North American outcomes registry to advance value-based spine care. Spine, 39(22 Suppl 1), S106–116.  https://doi.org/10.1097/brs.0000000000000579.Google Scholar
  37. 37.
    Bevans, M., Ross, A., & Cella, D. (2014). Patient-Reported Outcomes Measurement Information System (PROMIS): Efficient, standardized tools to measure self-reported health and quality of life. Nursing Outlook, 62(5), 339–345.  https://doi.org/10.1016/j.outlook.2014.05.009.Google Scholar
  38. 38.
    PROMIS. (2018). PROMIS adult profile scoring manual.Google Scholar
  39. 39.
    PROMIS. (2018). PROMIS ability to participate in social roles and activities scoring manual.Google Scholar
  40. 40.
    PROMIS. (2018). PROMIS depression scoring manual.Google Scholar
  41. 41.
    PROMIS. (2018). PROMIS fatigue scoring manual.Google Scholar
  42. 42.
    PROMIS. (2018). PROMIS physical function scoring manual.Google Scholar
  43. 43.
    PROMIS. (2018). PROMIS sleep disturbance scoring manual.Google Scholar
  44. 44.
    PROMIS. (2018). PROMIS pain interference scoring manual.Google Scholar
  45. 45.
    PROMIS. (2018). PROMIS anxiety scoring manual.Google Scholar
  46. 46.
    Fairbank, J. C., & Pynsent, P. B. (2000). The Oswestry Disability Index. Spine, 25(22), 2940–2952. discussion 2952.Google Scholar
  47. 47.
    Bono, C., Ried, L. D., Kimberlin, C., & Vogel, B. (2007). Missing data on the Center for Epidemiologic Studies Depression Scale: a comparison of 4 imputation techniques. Research in Social and Administrative Pharmacy, 3(1), 1–27.  https://doi.org/10.1016/j.sapharm.2006.04.001.Google Scholar
  48. 48.
    Choi, S. W., Schalet, B., Cook, K. F., & Cella, D. (2014). Establishing a common metric for depressive symptoms: linking the BDI-II, CES-D, and PHQ-9 to PROMIS depression. Psychological Assessment, 26(2), 513–527.  https://doi.org/10.1037/a0035768.Google Scholar
  49. 49.
    Schalet, B. D., Revicki, D. A., Cook, K. F., Krishnan, E., Fries, J. F., & Cella, D. (2015). Establishing a common metric for physical function: Linking the HAQ-DI and SF-36 PF subscale to PROMIS((R)) physical function. Journal of General Internal Medicine, 30(10), 1517–1523.  https://doi.org/10.1007/s11606-015-3360-0.Google Scholar
  50. 50.
    Yves, R. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 1–36.Google Scholar
  51. 51.
    Bentler, P. M. (2009). Alpha, dimension-free, and model-based internal consistency reliability. Psychometrika, 74(1), 137–143.  https://doi.org/10.1007/s11336-008-9100-1.Google Scholar
  52. 52.
    John, O. P., & Benet-Martinez, V. (2000). Measurement: Reliability, construct validation, and scale construction. In H. T. Reis & C. M. Judd (Eds.), Handbook of research methods in social and personality psychology (pp. 339–370). Cambridge, UK: Cambridge University Press.Google Scholar
  53. 53.
    Taber, K. S. (2017). The use of Cronbach’s alpha when developing and reporting research instruments in science education. Research in Science Education.  https://doi.org/10.1007/s11165-016-9602-2.Google Scholar
  54. 54.
    Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155–159.Google Scholar
  55. 55.
    Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55.  https://doi.org/10.1080/10705519909540118.Google Scholar
  56. 56.
    Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50.  https://doi.org/10.2307/3151312.Google Scholar
  57. 57.
    Tang, E., Ekundayo, O., Peipert, J. D., Edwards, N., Bansal, A., Richardson, C., et al. (2019). Validation of the patient-reported outcomes measurement information system (PROMIS)-57 and -29 item short forms among kidney transplant recipients. Quality of Life Research, 28(3), 815–827.Google Scholar
  58. 58.
    Fairbank, J. C. T. (2007). Use and abuse of Oswestry Disability Index. Spine, 32(25), 2787–2789.  https://doi.org/10.1097/BRS.0b013e31815b9e9d.Google Scholar
  59. 59.
    Rose, A. J., Bayliss, E., Huang, W., Baseman, L., Butcher, E., Garcia, R. E., et al. (2018). Evaluating the PROMIS-29 v2.0 for use among older adults with multiple chronic conditions. Quality of Life Research, 27(11), 2935–2944.  https://doi.org/10.1007/s11136-018-1958-5.Google Scholar
  60. 60.
    Hinchcliff, M. E., Beaumont, J. L., Carns, M. A., Podlusky, S., Thavarajah, K., Varga, J., et al. (2015). Longitudinal evaluation of PROMIS-29 and FACIT-dyspnea short forms in systemic sclerosis. The Journal of Rheumatology, 42(1), 64–72.  https://doi.org/10.3899/jrheum.140143.Google Scholar
  61. 61.
    Schalet, B. D., Hays, R. D., Jensen, S. E., Beaumont, J. L., Fries, J. F., & Cella, D. (2016). Validity of PROMIS physical function measured in diverse clinical samples. Journal of Clinical Epidemiology, 73, 112–118.  https://doi.org/10.1016/j.jclinepi.2015.08.039.Google Scholar
  62. 62.
    Scholle, S. H., Morton, S., Homco, J., Rodriguez, K., Anderson, D., Hahn, E., et al. (2018). Implementation of the PROMIS-29 in routine care for people with diabetes: Challenges and opportunities. The Journal of Ambulatory Care Management, 41(4), 274–287.  https://doi.org/10.1097/JAC.0000000000000248.Google Scholar
  63. 63.
    Fries, J. F., Cella, D., Rose, M., Krishnan, E., & Bruce, B. (2009). Progress in assessing physical function in arthritis: PROMIS short forms and computerized adaptive testing. The Journal of Rheumatology, 36(9), 2061–2066.  https://doi.org/10.3899/jrheum.090358.Google Scholar
  64. 64.
    Stone, A. A., Broderick, J. E., Junghaenel, D. U., Schneider, S., & Schwartz, J. E. (2016). PROMIS fatigue, pain intensity, pain interference, pain behavior, physical function, depression, anxiety, and anger scales demonstrate ecological validity. Journal of Clinical Epidemiology, 74, 194–206.  https://doi.org/10.1016/j.jclinepi.2015.08.029.Google Scholar
  65. 65.
    Alexander, D. L., Tropsha, A., & Winkler, D. A. (2015). Beware of R(2): Simple, unambiguous assessment of the prediction accuracy of QSAR and QSPR Models. Journal of Chemical Information and Modeling, 55(7), 1316–1322.  https://doi.org/10.1021/acs.jcim.5b00206.Google Scholar
  66. 66.
    Brodke, D. S., Goz, V., Voss, M. W., Lawrence, B. D., Spiker, W. R., & Hung, M. (2017). PROMIS PF CAT outperforms the ODI and SF-36 physical function domain in spine patients. Spine, 42(12), 921–929.  https://doi.org/10.1097/brs.0000000000001965.Google Scholar
  67. 67.
    Hung, M., Saltzman, C. L., Voss, M. W., Bounsanga, J., Kendall, R., Spiker, R., et al. (2017). Responsiveness of the Patient-reported outcomes measurement information system (PROMIS), neck disability index (NDI) and Oswestry Disability Index (ODI) instruments in patients with spinal disorders. Spine J, 224(3), 245–254.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Orthopaedic SurgeryVanderbilt University School of MedicineNashvilleUSA
  2. 2.Vanderbilt Center for Musculoskeletal ResearchVanderbilt University Medical CenterNashvilleUSA
  3. 3.Steamboat Orthopaedic and Spine InstituteSteamboat SpringsUSA
  4. 4.Department of Neurological SurgeryMayo ClinicRochesterUSA
  5. 5.Carolina Neurosurgery & Spine AssociatesCarolinas Healthcare SystemCharlotteUSA
  6. 6.Department of Physical Medicine and RehabilitationVanderbilt University School of MedicineNashvilleUSA

Personalised recommendations