Quality of Life Research

, Volume 28, Issue 5, pp 1111–1118 | Cite as

How depressed is “depressed”? A systematic review and diagnostic meta-analysis of optimal cut points for the Beck Depression Inventory revised (BDI-II)

  • Michael von Glischinski
  • Ruth von Brachel
  • Gerrit HirschfeldEmail author



The Beck Depression Inventory revised (BDI-II) is widely used tool to screen for depression. The aim of the present study was to systematically review and synthesize studies that determined optimal cut points for the BDI-II.


We identified 27 studies that tried to identify optimal cut points for the BDI-II. Study quality was assessed using QUADAS criteria. Cut points and their variability were analyzed descriptively, via simulation and synthesized with a diagnostic meta-analysis. Analysis was performed on all studies and subgroups based on the setting (psychiatric, somatic, healthy).


Cut points identified as optimal ranged from 10 to 25 across all studies. Simulation-based estimations of the variability inherent in studies show that much of the between-study differences may be attributed to random fluctuations. Diagnostic meta-analysis across all studies revealed that a cut point of 14.5 (95% CI 12.75–16.44) is optimal, yielding a sensitivity of 0.86 and a specificity of 0.78. Analyses within the different settings suggest using sample-specific cut points, specifically 18.18 in psychiatric settings, and 12.9 in primary care settings and healthy populations.


Most studies aimed at determining optimal cut points fail to acknowledge that reported results are only estimates and subject to random fluctuations resulting in conflicting recommendations for practitioners. Taking into account these fluctuations, we find that practitioners should use different cut points to screen for depression in primary care and healthy populations (a score of 13 and higher indicates depression) and psychiatric settings (a score of 19 and higher indicates depression). Methods to describe this variability and meta-analysis to synthesize findings across studies should be used more widely.


Depression Diagnostic utility Meta-analysis Beck Depression Inventory 



The study was supported by the German Federal ministry for Education and Research (BMBF #01EK1501) and the Witten/Herdecke University, Germany (#IFF2014-14).

Supplementary material

11136_2018_2050_MOESM1_ESM.r (42 kb)
Supplementary material 1 (R 41 KB)
11136_2018_2050_MOESM2_ESM.r (2 kb)
Supplementary material 2 (R 1 KB)
11136_2018_2050_MOESM3_ESM.r (3 kb)
Supplementary material 3 (R 2 KB)
11136_2018_2050_MOESM4_ESM.docx (29 kb)
Supplementary material 4 (DOCX 29 KB)


  1. 1.
    Adachi, Y., Aleksic, B., Nobata, R., Suzuki, T., Yoshida, K., Ono, Y., & Ozaki, N. (2012). Combination use of Beck Depression Inventory and two-question case-finding instrument as a screening tool for depression in the workplace. British Medical Journal Open, 2(3), e000596. Scholar
  2. 2.
    Balogun, R. A., Turgut, F., Balogun, S. A., Holroyd, S., & Abdel-Rahman, E. M. (2011). Screening for depression in elderly hemodialysis patients. Nephron Clinical Practice, 118(2), c72–c77. Scholar
  3. 3.
    Beard, C., Millner, A. J., Forgeard, M. J., Fried, E. I., Hsu, K. J., Treadway, M. T., … Björgvinsson, T. (2016). Network analysis of depression and anxiety symptom relationships in a psychiatric sample. Psychological Medicine, 46(16), 3359–3369.CrossRefGoogle Scholar
  4. 4.
    Beck, A. T., Steer, R. A., & Brown, G. K. (1996). BDI-II: Beck Depression Inventory manual (2nd ed.). San Antonio: Psychological Corporation.Google Scholar
  5. 5.
    Bossuyt, P. M., Reitsma, J. B., Bruns, D. E., Gatsonis, C. A., Glasziou, P. P., Irwig, L. … STARD Group. (2015). STARD 2015: An updated list of essential items for reporting diagnostic accuracy studies. BMJ, 351, h5527.CrossRefGoogle Scholar
  6. 6.
    Dutton, G. R., Grothe, K. B., Jones, G. N., Whitehead, D., Kendra, K., & Brantley, P. J. (2004). Use of the Beck Depression Inventory-II with African American primary care patients. General Hospital Psychiatry, 26(6), 437–442. Scholar
  7. 7.
    Ferrari, A. J., Charlson, F. J., Norman, R. E., Patten, S. B., Freedman, G., Murray, C. J., … Whiteford, H. A. (2013). Burden of depressive disorders by country, sex, age, and year: Findings from the global burden of disease study 2010. PLoS Medicine, 10(11), e1001547.CrossRefGoogle Scholar
  8. 8.
    Fried, E. I., & Nesse, R. M. (2015). Depression sum-scores don’t add up: Why analyzing specific depression symptoms is essential. BMC Medicine, 13(1), 1.CrossRefGoogle Scholar
  9. 9.
    Hasin, D. S., Sarvet, A. L., Meyers, J. L., Saha, T. D., Ruan, W. J., Stohl, M., & Grant, B. F. (2018). Epidemiology of adult DSM-5 major depressive disorder and its specifiers in the United States. JAMA Psychiatry, 75(4), 336–346.CrossRefGoogle Scholar
  10. 10.
    Hirschfeld, G., & do Brasil, P. E. A. A. (2014). A simulation study into the performance of “optimal” diagnostic thresholds in the population: “Large” effect sizes are not enough. Journal of Clinical Epidemiology, 67(4), 449–453.CrossRefGoogle Scholar
  11. 11.
    Kamenov, K., Caballero, F. F., Miret, M., Leonardi, M., Sainio, P., Tobiasz-Adamczyk, B., … Cabello, M. (2016). Which are the most burdensome functioning areas in depression? A cross-national study. Frontiers in Psychology, 7, 1342.CrossRefGoogle Scholar
  12. 12.
    Leeflang, M. M. G., Moons, K. G. M., Reitsma, J. B., & Zwinderman, A. H. (2008). Bias in sensitivity and specificity caused by data-driven selection of optimal cutoff values: Mechanisms, magnitude, and solutions. Clinical Chemistry, 54(4), 729–737.CrossRefGoogle Scholar
  13. 13.
    Lemmens, L., Arntz, A., Peeters, F., Hollon, S. D., Roefs, A., & Huibers, M. J. H. (2015). Clinical effectiveness of cognitive therapy v. interpersonal psychotherapy for depression: Results of a randomized controlled trial. Psychological Medicine, 45(10), 2095–2110.CrossRefGoogle Scholar
  14. 14.
    Low, G. D., & Hubley, A. M. (2007). Screening for depression after cardiac events using the Beck Depression Inventory-II and the Geriatric Depression Scale. Social Indicators Research, 82(3), 527–543. Scholar
  15. 15.
    McDowell, I. (2006). Measuring health: A guide to rating scales and questionnaires (3rd ed.). New York: Oxford University.CrossRefGoogle Scholar
  16. 16.
    Mitchell, A. J., Vaze, A., & Rao, S. (2009). Clinical diagnosis of depression in primary care: A meta-analysis. The Lancet, 374(9690), 609–619.CrossRefGoogle Scholar
  17. 17.
    Osman, A., Barrios, F. X., Gutierrez, P. M., Williams, J. E., & Bailey, J. (2008). Psychometric properties of the Beck Depression Inventory-II in nonclinical adolescent samples. Journal of Clinical Psychology, 64(1), 83–102. Scholar
  18. 18.
    Reitsma, J. B., Glas, A. S., Rutjes, A. W. S., Scholten, R. J. P. M., Bossuyt, P. M., & Zwinderman, A. H. (2005). Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. Journal of Clinical Epidemiology, 58(10), 982–990. Scholar
  19. 19.
    Reitsma, J. B., Rutjes, A. W. S., Khan, K. S., Coomarasamy, A., & Bossuyt, P. M. (2009). A review of solutions for diagnostic accuracy studies with an imperfect or missing reference standard. Journal of Clinical Epidemiology, 62(8), 797–806. Scholar
  20. 20.
    Revicki, D., Hays, R. D., Cella, D., & Sloan, J. (2008). Recommended methods for determining responsiveness and minimally important differences for patient-reported outcomes. Journal of Clinical Epidemiology, 61(2), 102–109. Scholar
  21. 21.
    Schulte-van Maaren, Y. W. M., Carlier, I. V. E., Zitman, F. G., van Hemert, A. M., de Waal, M. W. M., van der Does, A. J. W., … Giltay, E. J. (2013). Reference values for major depression questionnaires: The Leiden Routine Outcome Monitoring Study. Journal of Affective Disorders, 149(1–3), 342–349. Scholar
  22. 22.
    Seignourel, P. J., Green, C., & Schmitz, J. M. (2008). Factor structure and diagnostic efficiency of the BDI-II in treatment-seeking substance users. Drug and Alcohol Dependence, 93(3), 271–278. Scholar
  23. 23.
    Steinhauser, S., Schumacher, M., & Rücker, G. (2016). Modelling multiple thresholds in meta-analysis of diagnostic test accuracy studies. BMC Medical Research Methodology. Scholar
  24. 24.
    Strober, L. B., & Arnett, P. A. (2015). Depression in multiple sclerosis: The utility of common self-report instruments and development of a disease-specific measure. Journal of Clinical and Experimental Neuropsychology, 37(7), 722–732. Scholar
  25. 25.
    Subica, A. M., Fowler, J. C., Elhai, J. D., Frueh, B. C., Sharp, C., Kelly, E. L., & Allen, J. G. (2014). Factor structure and diagnostic validity of the Beck Depression Inventory–II with adult clinical inpatients: Comparison to a gold-standard diagnostic interview. Psychological Assessment, 26(4), 1106.CrossRefGoogle Scholar
  26. 26.
    Wang, D., Tian, L., & Zhao, Y. (2017). Smoothed empirical likelihood for the Youden index. Computational Statistics & Data Analysis, 115, 1–10.CrossRefGoogle Scholar
  27. 27.
    Wang, Y.-P., & Gorenstein, C. (2013). Psychometric properties of the Beck Depression Inventory-II: A comprehensive review. Revista Brasileira de Psiquiatria, 35(4), 416–431. Scholar
  28. 28.
    Whiting, P. F., Rutjes, A. W. S., Westwood, M. E., Mallett, S., & QUADAS-2 Steering Group (2013). A systematic review classifies sources of bias and variation in diagnostic test accuracy studies. Journal of Clinical Epidemiology, 66(10), 1093–1104. Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Universität Witten HerdeckeWittenGermany
  2. 2.Mental Health Research & Treatment CenterRuhr-Universität BochumBochumGermany
  3. 3.Faculty of Business Management and HealthBielefeld University of Applied SciencesBielefeldGermany

Personalised recommendations