Advertisement

Quality of Life Research

, Volume 27, Issue 9, pp 2295–2303 | Cite as

Diabetes symptoms predictors of health-related quality of life in adolescents and young adults with type 1 or type 2 diabetes

  • James W. VarniEmail author
  • Alan M. Delamater
  • Korey K. Hood
  • Jennifer K. Raymond
  • Kimberly A. Driscoll
  • Jenise C. Wong
  • Saleh Adi
  • Joyce P. Yi-Frazier
  • Ellen K. Grishman
  • Melissa A. Faith
  • Sarah D. Corathers
  • Jessica C. Kichler
  • Jennifer L. Miller
  • Elena M. Doskey
  • Vincent P. Aguirre
  • Robert W. Heffer
  • Don P. Wilson
  • the Pediatric Quality of Life Inventory™ 3.2 Diabetes Module Testing Study Consortium
Article

Abstract

Objectives

The objective was to investigate the patient-reported diabetes symptoms predictors of generic health-related quality of life (HRQOL) in adolescents and young adults (AYA) with type 1 or type 2 diabetes.

Methods

The 15-item PedsQL™ 3.2 Diabetes Module Diabetes Symptoms Summary Score and PedsQL™ 4.0 Generic Core Scales were completed in a 10-site national field test study by 513 AYA ages 13–25 years with type 1 (n = 424) or type 2 (n = 89) diabetes. Diabetes symptoms were tested for bivariate and multivariate linear associations with generic HRQOL.

Results

Diabetes symptoms were associated with decreased HRQOL in bivariate analyses. In predictive analytics models utilizing hierarchical multiple regression analyses controlling for relevant demographic and clinical covariates, diabetes symptoms accounted for 38 and 39% of the variance in patient-reported generic HRQOL for type 1 and type 2 diabetes, respectively, reflecting large effect sizes. The diabetes symptoms facets hyperglycemia symptoms, hypoglycemia symptoms, and nonspecific diabetes symptoms individually accounted for a significant percentage of the variance in separate exploratory predictive analytics models after controlling for demographic and clinical covariates, with small-to-large effect sizes.

Conclusions

Diabetes symptoms are potentially modifiable predictors of generic HRQOL in AYA with diabetes. Identifying specific diabetes symptoms or symptoms facets that are the most important predictors from the patient perspective facilitates a patient-centered approach in clinical research, clinical trials, and practice designed to enhance overall generic HRQOL in AYA with diabetes.

Keywords

Diabetes Type 1 diabetes Type 2 diabetes Symptoms Pediatrics Patient-reported outcomes Health-related quality of life PedsQL 

Abbreviations

FDA

Food and Drug Administration

HbA1c

Hemoglobin A1c (glycated hemoglobin)

HRQOL

Health-Related Quality of Life

PedsQL™

Pediatric Quality of Life Inventory™

PRO

Patient-reported outcome

Notes

Acknowledgements

The investigators thank the following individuals for their involvement in participant recruitment, data collection, and/or data verification: Marta Pardo, Morgan Drake, Luke Hamilton, Natalie Beauregard, Cisco Pascual, Nora Chokr, Marie Nader, Jacqueline Shea, Kylie Benson, Lisa Keys, Vanessa Guzman, Jeanette Velez, and Elizabeth Dabrowski.

Pediatric Quality of Life Inventory™ (PedsQL™) 3.2 Diabetes Module Testing Study Consortium: The PedsQL™ 3.2 Diabetes Module Testing Study Consortium sites include a Network and Statistical Center at the Center for Health Systems & Design, Colleges of Architecture and Medicine, Texas A&M University, College Station, TX (PI: James W. Varni, PhD), and 10 primary research data collection sites: Department of Pediatrics, Mailman Center for Child Development, University of Miami Miller School of Medicine, Miami, FL; (PI: Alan M. Delamater, PhD); Division of Pediatric Endocrinology and Diabetes, Stanford University School of Medicine, Stanford, CA (PI: Korey K. Hood, PhD); Department of Pediatrics, Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, TX (PIs: Ellen K. Grishman, MD, Melissa A. Faith, PhD, ABPP); Center for Endocrinology, Diabetes, & Metabolism, Children’s Hospital Los Angeles, Los Angeles, CA (PIs: Jennifer K. Raymond, MD, MCR, Nancy T. Chang, PhD, MSN, FNP); Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Denver, Denver, CO (PI: Kimberly A. Driscoll, PhD); The Madison Clinic for Pediatric Diabetes and Department of Pediatrics, Division of Endocrinology, University of California San Francisco, San Francisco, CA (PI: Jenise C. Wong, MD, PhD); Seattle Children's Research Institute, Seattle, WA (PI: Joyce P. Yi-Frazier, PhD); Department of Pediatrics, Division of Endocrinology and Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH (PIs: Sarah D. Corathers, MD, Jessica C. Kichler, PhD, CDE); Department of Pediatrics, Division of Pediatric Endocrinology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL (PI: Jennifer L. Miller, MD); Cook Children's Medical Center, Fort Worth, TX (PI: Don P. Wilson, MD).

Funding

No funding was specifically designated for the PedsQL™ 3.2 Diabetes Module field test study data collection effort or manuscript preparation.

Compliance with ethical standards

Conflict of interest

New item development and item modification of the existing PedsQL™ 3.0 Diabetes Module for the published item generation qualitative methods study for the PedsQL™ 3.2 Diabetes Module was previously funded by Eli Lilly and Company, Indianapolis. Dr. Varni holds the copyright and the trademark for the PedsQL™ and receives financial compensation from the Mapi Research Trust, which is a nonprofit research institute that charges distribution fees to for-profit companies that use the Pediatric Quality of Life Inventory™. Dr. Varni did not receive funding from Eli Lilly and Company for the current quantitative methods field test study. The other authors report no competing interests related to this study.

Ethical approval

The research protocol for the field test study was approved by the Institutional Review Board at each participating institution. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committees.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Mayer-Davis, E. J., Lawrence, J. M., Dabelea, D., Divers, J., Dolan, S. I., Imperatore, L., Linder, G., Marcovina, B., Pettitt, S., Pihoker, D. J., Saydah, C., S., & Wagenknecht, L. (2017). Incidence trends of type 1 and type 2 diabetes among youths, 2002–2012. New England Journal of Medicine, 376, 1419–1429.CrossRefPubMedGoogle Scholar
  2. 2.
    Dabelea, D., Mayer-Davis, E. J., Saydah, S., Imperatore, G., Linder, B., Divers, J., Bell, R., Badaru, A., Talton, J. W., Crume, T., Liese, A. D., Merchant, A. T., Lawrence, J. M., Reynolds, K., Dolan, L., Liu, L. L., & Hamman, R. F. (2014). Prevalence of type 1 and type 2 diabetes among children and adolescents from 2001 to 2009. JAMA, 311, 1778–1786.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    You, W. P., & Henneberg, M. (2016). Type 1 diabetes prevalence increasing globally and regionally: The role of natural selection and life expectancy at birth. BMJ Open Diabetes Research & Care, 4, e000161.Google Scholar
  4. 4.
    Dabelea, D., Stafford, J. M., Mayer-Davis, E. J., D’Agostino, R., Dolan, L., Imperatore, G., Linder, B., Lawrence, J. M., Marcovina, S. M., Mottl, A. K., Black, M. H., Pop-Busui, R., Saydah, S., Hamman, R. F., & Pihoker, C. (2017). Association of type 1 diabetes vs type 2 diabetes diagnosed during childhood and adolescence with complications during teenage years and young adulthood. JAMA, 317, 825–835.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Goethals, E. R., Oris, L., Soenens, B., Berg, C. A., Prikken, S., Van Broeck, N., Weets, I., Casteels, K., & Luyckx, K. (2017). Parenting and treatment adherence in type 1 diabetes throughout adolescence and emerging adulthood. Journal of Pediatric Psychology, 42, 922–932.CrossRefPubMedGoogle Scholar
  6. 6.
    Varni, J. W., Burwinkle, T. M., Jacobs, J. R., Gottschalk, M., Kaufman, F., & Jones, K. L. (2003). The PedsQL™ in type 1 and type 2 diabetes: Reliability and validity of the Pediatric Quality of Life Inventory™ Generic Core Scales and type 1 diabetes module. Diabetes Care, 26, 631–637.CrossRefPubMedGoogle Scholar
  7. 7.
    Anderson, B. J., Laffel, L. M., Domenger, C., Danne, T., Phillip, M., Mazza, C., Hanas, R., Waldron, S., Beck, R. W., Calvi-Gries, F., & Mathieu, C. (2017). Factors associated with diabetes-specific health-related quality of life in youth with type 1 diabetes: The global TEENs study. Diabetes Care, 40, 1002–1009.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lawrence, J. M., Yi-Frazier, J. P., Black, M. H., Anderson, A., Hood, K., Imperatore, G., Klingensmith, G. J., Naughton, M., Mayer-Davis, E. J., & Seid, M. (2012). Demographic and clinical correlates of diabetes-related quality of life among youth with type 1 diabetes. Journal of Pediatrics, 161, 201–207.CrossRefPubMedGoogle Scholar
  9. 9.
    Hilliard, M. E., Lawrence, J. M., Modi, A. C., Anderson, A., Crume, T., Dolan, L. M., Merchant, A. T., Yi-Frazier, J. P., & Hood, K. K. (2013). Identification of minimal clinically important difference scores of the PedsQL in children, adolescents, and young adults with Type 1 and Type 2 diabetes. Diabetes Care, 36, 1891–1897.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    FDA. (2009). Guidance for Industry: Patient-reported outcome measures: Use in medical product development to support labeling claims: Food and Drug Administration, U.S. Department of Health and Human Services, Rockville, MD.Google Scholar
  11. 11.
    Lasch, K. E., Marquis, P., Vigneux, M., Abetz, L., Arnould, B., Bayliss, M., Crawford, B., & Rosa, K. (2010). PRO development: Rigorous qualitative research as the crucial foundation. Quality of Life Research, 19, 1087–1096.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Rothman, M., Burke, L., Erickson, P., Leidy, N. K., Patrick, D. L., & Petrie, C. D. (2009). Use of existing patient-reported outcome (PRO) instruments and their modification: The ISPOR good research practices for evaluating and documenting content validity for the use of existing instruments and their modification PRO task force report. Value in Health, 12, 1075–1083.CrossRefPubMedGoogle Scholar
  13. 13.
    Varni, J. W., Curtis, B. H., Abetz, L. N., Lasch, K. E., Piault, E. C., & Zeytoonjian, A. A. (2013). Content validity of the PedsQL™ 3.2 Diabetes Module in newly diagnosed patients with Type 1 Diabetes Mellitus ages 8–45. Quality of Life Research, 22, 2169–2181.CrossRefPubMedGoogle Scholar
  14. 14.
    Varni, J. W., Delamater, A. M., Hood, K. K., Raymond, J. K., Chang, N. T., Driscoll, K. A., Wong, J. C., Yi-Frazier, J. P., Grishman, E. K., Faith, M. A., Corathers, S. D., Kichler, J. C., Miller, J. L., Doskey, E. M., Heffer, R. W., & Wilson, D. P. (2018). PedsQL 3.2 Diabetes Module for children, adolescents, and young adults: Reliability and validity in type 1 diabetes. Submitted for publication.Google Scholar
  15. 15.
    Chamberlain, J. J., Rhinehart, A. S., Shaefer, C. F., & Neuman, A. (2016). Diagnosis and management of diabetes: Synopsis of the 2016 American Diabetes Association Standards of Medical Care in Diabetes. Annals of Internal Medicine, 164, 542–552.CrossRefPubMedGoogle Scholar
  16. 16.
    Cusi, K., Sanyal, A. J., Zhang, S., Hartman, M. L., Bue-Valleskey, J. M., Hoogwerf, B. J., & Haupt, A. (2017). Non-alcoholic fatty liver disease (NAFLD) prevalence and its metabolic associations in patients with type 1 diabetes and type 2 diabetes. Diabetes, Obesity & Metabolism, 19, 1630–1634.CrossRefGoogle Scholar
  17. 17.
    Fayers, P. M., & Hand, D. J. (1997). Factor analysis, causal indicators and quality of life. Quality of Life Research, 6, 139–150.PubMedGoogle Scholar
  18. 18.
    Fairclough, D. L. (2002). Design and analysis of quality of life studies in clinical trials: Interdisciplinary statistics. New York: Chapman & Hall/CRC.CrossRefGoogle Scholar
  19. 19.
    Varni, J. W., & Limbers, C. A. (2009). The Pediatric Quality of Life Inventory: Measuring pediatric health-related quality of life from the perspective of children and their parents. Pediatric Clinics of North America, 56, 843–863.CrossRefPubMedGoogle Scholar
  20. 20.
    Varni, J. W., Seid, M., & Kurtin, P. S. (2001). PedsQL™ 4.0: Reliability and validity of the Pediatric Quality of Life Inventory™ Version 4.0 Generic Core Scales in healthy and patient populations. Medical Care, 39, 800–812.CrossRefPubMedGoogle Scholar
  21. 21.
    Varni, J. W., & Limbers, C. A. (2009). The PedsQL™ 4.0 Generic Core Scales young adult version: Feasibility, reliability and validity in a university student population. Journal of Health Psychology, 14, 611–622.CrossRefPubMedGoogle Scholar
  22. 22.
    Varni, J. W., Limbers, C. A., Burwinkle, T. M., Bryant, W. P., & Wilson, D. P. (2008). The ePedsQL™ in Type 1 and Type 2 Diabetes: Feasibility, reliability and validity of the Pediatric Quality of Life Inventory™ Internet administration. Diabetes Care, 31, 672–677.CrossRefPubMedGoogle Scholar
  23. 23.
    Kuczmarski, R. J., Ogden, C. L., Guo, S. S., Grummer-Strawn, L. M., Flegal, K. M., Mei, Z., Wei, R., Curtin, L. R., Roche, A. F., & Johnson, C. L. (2002). 2000 CDC growth charts for the United States: Methods and development. Vital Health Statistics, 11, 1–190.Google Scholar
  24. 24.
    Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2). Hillsdale, NJ: Erlbaum.Google Scholar
  25. 25.
    Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences (3). Mahwah, NJ: Erlbaum.Google Scholar
  26. 26.
    Costa, P. T., & McCrae, R. R. (1995). Domains and facets: Hierarchical personality assessment using the revised NEO Personality Inventory. Journal of Personality Assessment, 64, 21–50.CrossRefPubMedGoogle Scholar
  27. 27.
    Floyd, F. J., & Widaman, K. F. (1995). Factor analysis in the development and refinement of clinical assessment instruments. Psychological Assessment, 7, 286–299.CrossRefGoogle Scholar
  28. 28.
    Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16, 297–334.CrossRefGoogle Scholar
  29. 29.
    Nunnally, J. C., & Bernstein, I. R. (1994). Psychometric theory (3). New York: McGraw-Hill.Google Scholar
  30. 30.
    Naughton, M. J., Yi-Frazier, J. P., Morgan, T. M., Seid, M., Lawrence, J. M., Klingensmith, G. J., Waitzfelder, B., Standiford, D. A., & Loots, B. (2014). Longitudinal associations between sex, diabetes self-care, and health-related quality of life among youth with type 1 or type 2 diabetes mellitus. Journal of Pediatrics, 164, 1376–1383.CrossRefPubMedGoogle Scholar
  31. 31.
    A.D.A. (2015). Glycemic targets. Diabetes Care, 38(Suppl 1), S33–S40.Google Scholar
  32. 32.
    Varni, J. W., Limbers, C. A., Bryant, W. P., & Wilson, D. P. (2009). The PedsQL™ Multidimensional Fatigue Scale in Type 1 diabetes: Feasibility, reliability, and validity. Pediatric Diabetes, 10, 321–328.CrossRefPubMedGoogle Scholar
  33. 33.
    Hood, K. K., Beavers, D. P., Yi-Frazier, J., Bell, R., Dabelea, D., Mckeown, R. E., & Lawrence, J. M. (2014). Psychosocial burden and glycemic control during the first 6 years of diabetes: Results from the SEARCH for Diabetes in Youth study. Journal of Adolescent Health, 55, 498–504.CrossRefPubMedGoogle Scholar
  34. 34.
    Yi-Frazier, J. P., Hilliard, M. E., Fino, N. F., Naughton, M. J., Liese, A. D., Hockett, C. W., Hood, K. K., Pihoker, C., Seid, M., Lang, W., & Lawrence, J. M. (2016). Whose quality of life is it anyway? Discrepancies between youth and parent health-related quality of life ratings in type 1 and type 2 diabetes. Quality of Life Research, 25, 1113–1121.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • James W. Varni
    • 1
    Email author
  • Alan M. Delamater
    • 2
  • Korey K. Hood
    • 3
  • Jennifer K. Raymond
    • 4
  • Kimberly A. Driscoll
    • 5
  • Jenise C. Wong
    • 6
  • Saleh Adi
    • 6
  • Joyce P. Yi-Frazier
    • 7
  • Ellen K. Grishman
    • 8
  • Melissa A. Faith
    • 8
    • 15
  • Sarah D. Corathers
    • 9
  • Jessica C. Kichler
    • 10
  • Jennifer L. Miller
    • 11
  • Elena M. Doskey
    • 12
    • 16
  • Vincent P. Aguirre
    • 13
  • Robert W. Heffer
    • 13
  • Don P. Wilson
    • 14
  • the Pediatric Quality of Life Inventory™ 3.2 Diabetes Module Testing Study Consortium
  1. 1.Department of Pediatrics, College of Medicine, Department of Landscape Architecture and Urban Planning, College of ArchitectureTexas A&M UniversityCollege StationUSA
  2. 2.Department of Pediatrics, Mailman Center for Child DevelopmentUniversity of Miami Miller School of MedicineMiamiUSA
  3. 3.Division of Pediatric Endocrinology and DiabetesStanford University School of MedicineStanfordUSA
  4. 4.Center for Endocrinology, Diabetes, & MetabolismChildren’s Hospital Los AngelesLos AngelesUSA
  5. 5.Department of Pediatrics, Barbara Davis Center for DiabetesUniversity of Colorado DenverDenverUSA
  6. 6.The Madison Clinic for Pediatric Diabetes and Department of Pediatrics, Division of EndocrinologyUniversity of California San FranciscoSan FranciscoUSA
  7. 7.Seattle Children’s Research InstituteSeattleUSA
  8. 8.Division of Pediatric Endocrinology, Department of PediatricsUniversity of Texas Southwestern Medical CenterDallasUSA
  9. 9.Department of Pediatrics, Division of Endocrinology, Cincinnati Children’s Hospital Medical CenterUniversity of Cincinnati College of MedicineCincinnatiUSA
  10. 10.Division of Behavioral Medicine and Clinical Psychology, Department of Pediatrics, Cincinnati Children’s Hospital Medical CenterUniversity of Cincinnati College of MedicineCincinnatiUSA
  11. 11.Division of Pediatric Endocrinology, Ann and Robert H. Lurie Children’s Hospital of ChicagoNorthwestern University Feinberg School of MedicineChicagoUSA
  12. 12.Department of Educational PsychologyTexas A&M UniversityCollege StationUSA
  13. 13.Department of PsychologyTexas A&M UniversityCollege StationUSA
  14. 14.Cook Children’s Medical CenterFort WorthUSA
  15. 15.Institute for Brain Protection SciencesJohns Hopkins All Children’s HospitalSaint PetersburgUSA
  16. 16.University of Oklahoma Health Sciences CenterOklahoma CityUSA

Personalised recommendations