A fuzzy model to assess the resilience of Protection and Civil Defense Organizations

  • Viviana Maura dos Santos
  • Cláudio Henrique dos Santos Grecco
  • Ricardo José Matos de Carvalho
  • Paulo Victor Rodrigues de CarvalhoEmail author


Resilience is the intrinsic ability of a system to adjust its functioning prior to, during, or following changes and disturbances, so that it can sustain required operations under expected and unexpected conditions. Protection and Civil Defense Organizations (PCDOs), communities and cities deal with disaster management involving routine, non-routine and even unpredictable/unforeseen situations with varying degrees of complexity. It is important that such organizations continually assess their resilience, enable them to learn on their weaknesses and real capacities to cope with emergency situations. This research aimed the development of an Organization Resilience Indicator System (ORIS) based on a fuzzy model to enable PCDOs self-assesses their resilience. Based on a literature review on organizational and community’s resilience, a system of resilience indicators was defined. This system was validated by experts using fuzzy set theory to aggregate opinions in the development of a resilience ideal pattern. Then, the resilience of four PCDO organizations was self-evaluated. The results were accordingly to maturity level of the organizations evaluated, indicating that the ORIS is valuable to measure PCDOs resilience.


Disaster prevention Indicators Resilience indicators Aggregation of group opinions 



  1. Brasil. L. 12.608: Presidência da república. (in Portuguese) (2012). Acessed 20 Feb 2017
  2. Bruneau M., Chang S., Eguchi R., Lee G., O’Rourke T., Reinhorn A., Shinozuka M., Tierney K., Wallace W., von Winterfeldt D.: A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities. Earthquake Spectra 19(4), 733–752 (2003)CrossRefGoogle Scholar
  3. Carvalho, P.V.R., dos Santosa, I.L., Vidal, M.C.R.: Nuclear power plant shift supervisor’s decision making during micro-incidents. Int. J. Ind. Ergon. 35, 619–644 (2005)CrossRefGoogle Scholar
  4. Carvalho, P.V.R. De, Dos Grecco, C.H.S., Souza, A.M., Huber, G.J., Gomes, J.O.: A fuzzy model to assess disaster risk reduction maturity level based on the Hyogo Framework for Action. Nat. Hazards 83(1), 309–326 (2016). CrossRefGoogle Scholar
  5. Carreño, M.L., Cardona, O.D., Barbat, A.H.: A disaster risk management performance index. Nat. Hazards 41(1), 1–20 (2007)CrossRefGoogle Scholar
  6. CEPED/UFSC Centro Universitário de Pesquisa e Estudos sobre Desastres/Universidade Federal de Santa Catarina: Gestão de recursos federais de Defesa Civil. Florianópolis. (2014). Acessed 22 June 2017
  7. CDEM Ministry of Civil Defence & Emergency Management NZ: National Disaster Resilience Strategy. (2019). Acessed September 2019
  8. Chan, S.L., Wey, W.M., Chang, P.H.: Establishing disaster resilience indicators for Tan-sui river basin in Taiwan. Soc. Indic. Res. 115, 387–418 (2014). CrossRefGoogle Scholar
  9. Comfort, L.K.: Building community resilience to hazards. Saf. Sci. 90, 1–4 (2016). CrossRefGoogle Scholar
  10. Cutter, S.L., Barnes, L., Berry, M., Burton, C., Evans, E., Tate, E., Webb, J.: A place-based model for understanding community resilience to natural disasters. Glob. Environ. Change 18, 598–606 (2008). CrossRefGoogle Scholar
  11. Cutter, S.L., Burton, C.G., Emrich, C.T.: Disaster resilience indicators for benchmarking baseline conditions. J. Homel. Secur. Emerg. Manag. 7, 1–14 (2010). CrossRefGoogle Scholar
  12. Cutter, S.L., Ash, K.D., Emrich, C.T.: The geographies of community disaster resilience. Glob. Environ. Change. 29, 65–77 (2014). CrossRefGoogle Scholar
  13. Dasgupta, R., Shaw, R.: An indicator based approach to assess coastal communities’ resilience against climate related disasters in Indian Sundarbans. J. Coast. Conserv. 19, 85–101 (2015). CrossRefGoogle Scholar
  14. Dekker, S.: Just Culture: Balancing Safety and Accountability. Ashgate, Aldershot (2012)Google Scholar
  15. Engle N.L., de Bremond A., Malone E.L., Moss R.H. Towards a resilience indicator framework for making climate-change adaptation decisions. Mitigation Adapt Strat Glob Change 19, 1295–1312 (2013)CrossRefGoogle Scholar
  16. Funabashi, Y., Kitazawa, K.: Fukushima in review: a complex disaster, a disastrous response. Bull. At. Sci. 68(2), 9–21 (2012)CrossRefGoogle Scholar
  17. Glaser, B.G., Strauss, A.L.: The Discovery of Grounded Theory: Strategies for Qualitative Research (1st Ed.) (2017)., Routledge, NYCrossRefGoogle Scholar
  18. Gomes, J.O., Borges, M.R., Huber, G.J., Carvalho, P.V.R.: Analysis of the resilience of team performance during a nuclear emergency response exercise. Appl. Ergon. 45(3), 780–788 (2014)CrossRefGoogle Scholar
  19. Grecco, C., Vidal, M., Cosenza, C., dos Santos, I., Carvalho, P.V.R.: Safety culture assessment: a fuzzy model for improving safety performance in a radioactive installation. Prog. Nucl. Energy 70(2014), 71–83 (2014)CrossRefGoogle Scholar
  20. Hale, A., Heijer, T.: Defining resilience. In: Hollnagel, E., Woods, D.D., Leveson, N. (eds.) Resilience Engineering: Concepts and Precepts, vol. 1. Ashgate, Aldershot (2006)Google Scholar
  21. Holling, C.S., Gunderson, L.: Resilience and adaptive cycles. In: Gunderson, L., Holling, C.S. (eds.) Panarchy: Understanding Transformations in Human and Natural Systems, pp. 25–62. Island Press, Washington (2002)Google Scholar
  22. Hollnagel, E.: Prologue: the scope of resilience engineering. In: Hollnagel, E., Pariès, J., Woods, D., Wreathall, J. (eds.) Resilience Engineering in Practice: A Guidebook. Ashgate: Studies in Resilience Engineering, Aldershot (2010)Google Scholar
  23. Horney, J., Aminto, M., Berke, P.R., Smith, G.: Developing indicators to measure post- disaster community recovery in the United States. Disasters 41, 124–149 (2016). CrossRefGoogle Scholar
  24. Huber, J.G., Orlando, J., Carvalho, P.V.R.: A program to support the construction and evaluation of resilience indicators. Work 41, 2810–2816 (2012). CrossRefGoogle Scholar
  25. Hsu, H.M., Chen, C.T.: Aggregation of fuzzy opinions under group decision making. Fuzzy Sets Syst. 79, 279–285 (1996)CrossRefGoogle Scholar
  26. Ishikawa, A., Amagasa, M., Shiga, T., Tomizawa, G., Tatsuta, R., Mieno, H.: The max-min delphi method and fuzzy delphi method via fuzzy integration. Fuzzy Sets Syst. 55, 241–253 (1993)CrossRefGoogle Scholar
  27. Jung, K., Song, M.: Linking emergency management networks to disaster resilience: bonding and bridging strategy in hierarchical or horizontal collaboration networks. Qual. Quant. 49, 1465–1483 (2015). CrossRefGoogle Scholar
  28. Labaka, L., Hernantes, J., Sarriegi, S.J.: A framework to improve the resilience of critical infrastructures. Int. J. Disaster Resil. Built Environ. 6, 102–116 (2015). CrossRefGoogle Scholar
  29. Lee, H.M.: Group decision making using fuzzy theory for evaluating the rate of aggregative risk in software development. Fuzzy Sets Syst. 80, 261–271 (1996)CrossRefGoogle Scholar
  30. Lee, A.V., Vargo, J., Seville, E.: Developing a tool to measure and compare organizations’ resilience. Nat. Hazards Rev. 14, 29–41 (2013). CrossRefGoogle Scholar
  31. McManus, S., Seville, E., Vargo, J., Brunsdon, D.: Facilitated process for improving organizational resilience. Nat. Hazards Rev. 9, 81–90 (2008)CrossRefGoogle Scholar
  32. Morel, G., Amalberti, R., Chauvin, C.: Articulating the differences between safety and resilience: the decision-making process of professional seafishing skippers. Hum. Factors 50, 1–16 (2008)CrossRefGoogle Scholar
  33. Nakamura, H., Umeki, H., Kato, T.: Importance of communication and knowledge of disasters in community-based disaster-prevention meetings. Saf. Sci. 99, 235–243 (2017). CrossRefGoogle Scholar
  34. Pedrycz, W.: Why triangular membership functions? Fuzzy Sets Syst. 64, 21–30 (1994)CrossRefGoogle Scholar
  35. Rabbani, M., Soufi, H.R., Torabi, S.A.: Developing a two-step fuzzy cost-benefit analysis for strategies to continuity management and disaster recovery. Saf. Sci. 85, 9–22 (2016). CrossRefGoogle Scholar
  36. Rapaport, C., Hornik, L.T., Cohen, O., Lahad, M., Leykin, D., Aharonson, D.L.: The relationship between community type and community resilience. Int. J. Disaster Risk Reduct. 31, 470–477 (2018). CrossRefGoogle Scholar
  37. Reason, J.: Managing the Risks of Organizational Accidents. Ashgat, Aldershot (1997)Google Scholar
  38. Rose, A., Krausmann, E.: An economic framework for the development of a resilience index for business recovery. Int. J. Disaster Risk Reduct. 5, 73–83 (2013). CrossRefGoogle Scholar
  39. Sadiq, A.A., Graham, J.D.: Exploring the predictors of organizational preparedness for natural disasters. Risk Anal. 36, 1040–1053 (2016). CrossRefGoogle Scholar
  40. Saja, A., Teo, M., Goonetilleke, A., Ziyath, A.M.: An inclusive and adaptative framework for measuring social resilience to disasters. Int. J. Disaster Risk Reduct. 28, 862–873 (2018). CrossRefGoogle Scholar
  41. Silva, J.C.S., Carvalho, R.J.M., Pimenta, A.F., Carvalho, P.V.R.: Solidarity and community resilience in a disaster situation: an understanding of communitarian ergonomics. In: 19th Triennial Congress of the International Ergonomics Association. (2015) Melbourne—Australia (2015)Google Scholar
  42. Sheridan, T.B.: Risk, human error and system resilience: fundamental ideas. Hum. Factors 50(3), 418–426 (2008)CrossRefGoogle Scholar
  43. Sudmeier, K., Jaboyedoff, M., Jaquet, S.: Operationalizing “resilience” for disaster risk reduction in mountainous Nepal. Disaster Prev. Manag. 22(4), 366–377 (2013). CrossRefGoogle Scholar
  44. Tate, E.: Social vulnerability indices: a comparative assessment using uncertainty and sensitivity analysis. Nat. Hazards 63, 325–347 (2012)CrossRefGoogle Scholar
  45. UNISDR: Hyogo Framework for Action 2005–2015: Building the Resilience of Nations and Communities to Disasters. (2005). Accessed 22 Sept 2017
  46. UNISDR: Terminology on Disaster Risk Reduction. UNISDR, Geneva. (2009). Accessed 12 Mar 2017
  47. UNISDR: Sendai Framework for Disaster Risk Reduction 2015–2030. (2015). Accessed 22 Sept 2017
  48. Van de Vorm, J., Beek, D., Bos, E., Steijger, N., Gallis, R., Zwetsloot, G.: Images of resilience: the resilience analysis grid applicable at several organizational levels? In: Hollnagel, E., Rigaud, É., Besnard, D. (eds.) roceedings of the Fourth Resilience Engineering Symposium, pp. 263–269. Presses de Mines, Paris (2011). CrossRefGoogle Scholar
  49. Woods, D.: Essential characteristics of resilience. In: Hollnagel, E., Woods, D., Leveson, N. (eds.) Resilience Engineering: Concepts and Precepts. Ashgate, Aldershot (2006)Google Scholar
  50. Yager, R.R., Filev, D.P.: On the issue of defuzzification and selection based on a fuzzy set. Fuzzy Sets Syst. 1993(55), 255–272 (1993)CrossRefGoogle Scholar
  51. Yoon, D.K., Kang, J.E., Brody, S.D.: Journal of environmental planning and a measurement of community disaster resilience in Korea. J. Environ. Plan. Manag. (2015). CrossRefGoogle Scholar
  52. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefGoogle Scholar
  53. Zadeh, L.A.: Fuzzy logic = computing with words. IEEE Trans. Fuzzy Syst. 4, 103–111 (1996)CrossRefGoogle Scholar
  54. Zimmermann, H.J.: Fuzzy Set Theory and Its Applications, 3rd edn. Kluwer Academic Publishers, Dordrecht (1996)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Programa de Pós-Graduação em Engenharia de Produção PEP-UFRNUniversidade Federal do Rio grande do NorteLagoa Nova, NatalBrazil
  2. 2.Comissão Nacional de Energia Nuclear, Instituto de Engenharia NuclearCidade UniversitáriaRio de JaneiroBrazil
  3. 3.Universidade Federal do Rio de Janeiro, Programa de Pos-Graduação em Informática PPGI/UFRJCidade UniversitáriaRio de JaneiroBrazil

Personalised recommendations