Advertisement

Quality & Quantity

, Volume 51, Issue 3, pp 1207–1216 | Cite as

Determination of the most influential factors for number of patents prediction by adaptive neuro-fuzzy technique

  • Miloš Milovančević
  • Dušan MarkovićEmail author
  • Vlastimir Nikolić
  • Igor Mladenović
Article
  • 331 Downloads

Abstract

Number of patents may be developed on the basis on different natural and science and technological factors. Number of patents prediction based on the different factors in many countries is analyzed in this investigation. These factors represent natural and science resources. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data in order to select the most influential factors for the number of patents prediction. Five inputs are considered: research and development (R&D) resources, natural resources, quality of academic institutions, quality of collaboration with the private sector and quality of education. As the ANFIS output, number of patents is considered. The ANFIS process for variable selection is also implemented in order to detect the predominant factors affecting the prediction of number of patents. Results show that the R&D is the most influential factor for the number of patents prediction.

Keywords

ANFIS Prediction Number of patents R&D Innovation Education 

References

  1. Al-Ghandoor, A., Samhouri, M.: Electricity consumption in the industrial sector of jordan: application of multivariate linear regression and adaptive neuro-fuzzy techniques. Jordan J. Mech. Ind. Eng. 3(1), 69–76 (2009)Google Scholar
  2. Altuntas, S., Dereli, T., Kusiak, A.: Forecasting technology success based on patent data. Technol. Forecast. Soc. Change 96, 202–214 (2015)CrossRefGoogle Scholar
  3. Caviggioli, F.: Foreign applications at the Japan Patent Office: an empirical analysis of selected growth factors. World Patent Inf. 33, 157–167 (2011)CrossRefGoogle Scholar
  4. Dannegger, F., Hingley, P.: Predictive accuracy of survey-based forecasts for numbers of filings at the European Patent Office. World Patent Inf. 35, 187–200 (2013)CrossRefGoogle Scholar
  5. Ekici, B.B., Aksoy, U.T.: Prediction of building energy needs in early stage of design by using ANFIS. Expert Syst. Appl. 38, 5352 (2011)CrossRefGoogle Scholar
  6. Hidalgo, A., Gabaly, S.: Use of prediction methods for patent and trademark applications in Spain. World Patent Inf. 34, 19–29 (2012)CrossRefGoogle Scholar
  7. Hidalgo, A., Gabaly, S.: Optimization of prediction methods for patents and trademarks in Spain through the use of exogenous variables. World Patent Inf. 35, 130–140 (2013)CrossRefGoogle Scholar
  8. Hingley, P., Bas, S.: Numbers and sizes of applicants at the European Patent Office. World Patent Inf. 31, 285–298 (2009)CrossRefGoogle Scholar
  9. Hingley, P., Park, W.: A dynamic log-linear regression model to forecast numbers of future filings at the European Patent Office. World Patent Inf. 42, 19–27 (2015)CrossRefGoogle Scholar
  10. Inal, M.: Determination of dielectric properties of insulator materials by means of ANFIS: a comparative study. Expert Syst. Appl. 195, 34 (2008)Google Scholar
  11. Jang, J.-S.R.: ANFIS: adaptive-network-based fuzzy inference systems. IEEE Trans. Syst. Man Cybern. 23, 665–685 (1993)CrossRefGoogle Scholar
  12. Khajeh, A., Modarress, H., Rezaee, B.: Application of adaptive neuro-fuzzy inference system for solubility prediction of carbon dioxide in polymers. Expert Syst. Appl. 36, 5728 (2009)CrossRefGoogle Scholar
  13. Kurnaz, S., Cetin, O., Kaynak, O.: Adaptive neuro-fuzzy inference system based autonomous flight control of unmanned air vehicles. Expert Syst. Appl. 37, 1229–1234 (2010)CrossRefGoogle Scholar
  14. Lai, Y.-H., Che, H.-C.: Modeling patent legal value by Extension Neural Network. Expert Syst. Appl. 36, 10520–10528 (2009)CrossRefGoogle Scholar
  15. Leamer, E.: Sources of Comparative Advantage: Theory and Evidence. MIT Press, Cambridge (1984)Google Scholar
  16. Lo, S.P., Lin, Y.Y.: The prediction of wafer surface non-uniformity using FEM and ANFIS in the chemical mechanical polishing process. J. Mater. Process. Technol. 168, 250 (2005)CrossRefGoogle Scholar
  17. Petković, D.: Adaptive neuro-fuzzy fusion of sensor data. Infrared Phys. Technol. 67, 222–228 (2014). doi: 10.1016/j.infrared.2014.07.031 CrossRefGoogle Scholar
  18. Petković, D.: Adaptive neuro-fuzzy approach for estimation of wind speed distribution. Electr. Power Energy Syst. 73, 389–392 (2015a). doi: 10.1016/j.ijepes.2015.05.039 CrossRefGoogle Scholar
  19. Petković, D.: Adaptive neuro-fuzzy optimization of the net present value and internal rate of return of a wind farm project under wake effect. Bus. Econ. Res. J. 8, 11–28 (2015b). doi: 10.7835/jcc-berj-2015-0102 CrossRefGoogle Scholar
  20. Petković, D., Ćojbašić, Ž.: Adaptive neuro-fuzzy estimation of automatic nervous system parameters effect on heart rate variability. Neural Comput. Appl. 21(8), 2065–2070 (2012)CrossRefGoogle Scholar
  21. Petković, D., Petković, N.D.: Applications and adaptive neuro-fuzzy estimation of conductive silicone rubber properties. Strojarstvo: časopis za teoriju i praksu u strojarstvu 54(3), 197–203 (2013)Google Scholar
  22. Petković, D., Issa, M., Pavlović, N.D., Pavlović, N.T., Zentner, L.: Adaptive neuro-fuzzy estimation of conductive silicone rubber mechanical properties. Expert Syst. Appl. 39, 9477–9482 (2012a)CrossRefGoogle Scholar
  23. Petković, D., Issa, M., Pavlović, N.D., Zentner, L., Ćojbašić, Ž.: Adaptive neuro fuzzy controller for adaptive compliant robotic gripper. Expert Syst. Appl. 39, 13295–13304 (2012b)CrossRefGoogle Scholar
  24. Petković, D., Mirna, I., Pavlović D, N.D., Pavlović D, N.T., Zentner, L.: Adaptive neuro-fuzzy estimation of conductive silicone rubber mechanical properties. Expert Syst. Appl. 39(10), 9477–9482 (2012c)CrossRefGoogle Scholar
  25. Petković, D., Mirna, I., Pavlović, N.D., Zentner, L., Ćojbašić, Ž.: Adaptive neuro fuzzy controller for adaptive compliant robotic gripper. Expert Syst. Appl. 39(18), 13295–13304 (2012d)CrossRefGoogle Scholar
  26. Petković, D., Pavlović, N.D., Ćojbašić, Ž., Pavlović, N.T.: Adaptive neuro fuzzy estimation of underactuated robotic gripper contact forces. Expert Syst. Appl. 40(1), 281–286 (2013a)CrossRefGoogle Scholar
  27. Petković, D., Ćojbašić, Ž., Lukić, S.: Adaptive neuro fuzzy selection of heart rate variability parameters affected by autonomic nervous system. Expert Syst. Appl. 40(11), 4490–4495 (2013b)CrossRefGoogle Scholar
  28. Petković, D., Ćojbašić, Ž., Nikolić, V.: Adaptive neuro-fuzzy approach for wind turbine power coefficient estimation. Renew. Sustain. Energy Rev. 28, 191–195 (2013c)CrossRefGoogle Scholar
  29. Petković, D., Pavlović, N.T., Shamshirband, S., Kiah, M.L.M., Anuar, N.B., Idris, M.Y.I.: Adaptive neuro-fuzzy estimation of optimal lens system parameters. Opt. Lasers Eng. 55, 84–93 (2014a)CrossRefGoogle Scholar
  30. Petković, D., Ćojbašić, Ž., Nikolić, V., Shamshirband, S., Kiah, M.L.M., Anuar, N.B., Wahab, A.W.A.: Adaptive neuro-fuzzy maximal power extraction of wind turbine with continuously variable transmission. Energy 64, 868–874 (2014b)CrossRefGoogle Scholar
  31. Petković, D., Shamshirband, S., Petković, N.T., Anuar, N.B., Kiah, M.L.M.: Modulation transfer function estimation of optical lens system by adaptive neuro-fuzzy methodology. Opt. Spectrosc. 117(1), 121–131 (2014c). doi: 10.7868/S0030403414070046 CrossRefGoogle Scholar
  32. Petković, D., Shamshirband, S., Anuar, N.B., Nasir, M.H.N.M., Petković, N.T., Akib, S.: Adaptive neuro-fuzzy prediction of modulation transfer function of optical lens system. Infrared Phys. Technol. 65, 54–60 (2014d). doi: 10.7868/S0030403414070046 CrossRefGoogle Scholar
  33. Petković, D., Shamshirband, S., Ćojbašić, Ž., Nikolić, V., Anuar, N.B., Sabri, A.Q.M., Akib, S.: Adaptive neuro-fuzzy estimation of building augmentation of wind turbine power. Comput. Fluids 97(25), 188–194 (2014e)CrossRefGoogle Scholar
  34. Petković, D., Shamshirband, S., Iqbal, J., Anuar, N.B., Petković, N.D., Kiah, M.L.M.: Adaptive neuro-fuzzy prediction of grasping object weight for passively compliant gripper. Appl. Soft Comput. 22, 424–431 (2014f)CrossRefGoogle Scholar
  35. Petković, D., Mirna, I., Petković, N.D., Zentner, L., Nor Ridzuan Daud, M., Shamshirband, S.: Contact positions estimation of sensing structure using adaptive neuro-fuzzy inference system. Kybernetes 43(5), 783–796 (2014g)CrossRefGoogle Scholar
  36. Petković, D., Shamshirband, S., Petković, N.D., Saboohi, H., Altameem, T.A., Gani, A.: Determining the joints most strained in an underactuated robotic finger by adaptive neuro-fuzzy methodology. Adv. Eng. Softw. 77, 28–34 (2014h)CrossRefGoogle Scholar
  37. Petković, D., Shamshirband, S., Anuar, N.B., Naji, S., Kiah, M.L.M., Gani, A.: Adaptive neuro-fuzzy evaluation of wind farm power production as function of wind speed and direction. Stoch. Env. Res. Risk Assess. 29(3), 793–802 (2015a). doi: 10.1007/s00477-014-0901-8 CrossRefGoogle Scholar
  38. Petković, D., Mirna, I., Petković, N.D., Zentner, L.: Potential of adaptive neuro-fuzzy inference system for contact positions detection of sensing structure. Measurement 61, 234–242 (2015b). doi: 10.1016/j.measurement.2014.10.040 CrossRefGoogle Scholar
  39. Petković, D., Shamshirband, S., Anuar, N.B., Sabri, A.Q.M., Rahman, Z.B.A., Petković, N.D.: Input displacement neuro-fuzzy control and object recognition by compliant multi-fingered passively adaptive robotic gripper. J. Intell. Robot. Syst. (2015c). doi: 10.1007/s10846-015-0182-6 CrossRefGoogle Scholar
  40. Petković, D., Shamshirband, S., Tong, C.W., Al-Shammari, E.T.: Generalized adaptive neuro-fuzzy based method for wind speed distribution prediction. Flow Meas. Instrum. 43, 47–52 (2015d). doi: 10.1016/j.flowmeasinst.2015.03.003 CrossRefGoogle Scholar
  41. Petković, D., Gocic, M., Trajković, S., Shamshirband, S., Motamedi, S., Hashim, R., Bonakdari, H.: Determination of the most influential weather parameters on reference evapotranspiration by adaptive neuro-fuzzy methodology. Comput. Electron. Agric. 114, 277–284 (2015e). doi: 10.1016/j.compag.2015.04.012 CrossRefGoogle Scholar
  42. Petković, D., Shamshirband, S., Abbasi, A., Kiani, K., Al-Shammari, E.T.: Prediction of contact forces of underactuated finger by adaptive neuro fuzzy approach. Mech. Syst. Signal Process. 64–65, 520–527 (2015f). doi: 10.1016/j.ymssp.2015.03.013 CrossRefGoogle Scholar
  43. Singh, R., Kianthola, A., Singh, T.N.: Estimation of elastic constant of rocks using an ANFIS approach. Appl. Soft Comput. 12, 40–45 (2012)CrossRefGoogle Scholar
  44. Tian, L., Collins, C.: Adaptive neuro-fuzzy control of a flexible manipulator. Mechatronics 15, 1305–1320 (2005)CrossRefGoogle Scholar
  45. Yamauchi, I., Nagaoka, S.: Does the outsourcing of prior art search increase the efficiency of patent examination? Evid. Jpn. Res. Policy 44, 1601–1614 (2015)CrossRefGoogle Scholar
  46. Zhang, S., Yuan, C.-C., Chang, K-Chiun, Ken, Y.: Exploring the nonlinear effects of patent H index, patent citations, and essential technological strength on corporate performance by using artificial neural network. J. Informetr. 6, 485–495 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Miloš Milovančević
    • 1
  • Dušan Marković
    • 1
    Email author
  • Vlastimir Nikolić
    • 1
  • Igor Mladenović
    • 2
  1. 1.Faculty of Mechanical EngineeringUniversity of NišNišSerbia
  2. 2.Faculty of EconomicsUniversity of NišNišSerbia

Personalised recommendations