Quality & Quantity

, Volume 51, Issue 3, pp 1133–1146 | Cite as

RETRACTED ARTICLE: Estimation of the most influential science and technology factors for economic growth forecasting by soft computing technique

  • Dušan MarkovićEmail author
  • Igor Mladenović
  • Miloš Milovančević


Economic growth may be developed on the basis on combination of different factors. In this investigation was analyzed the economic growth forecasting based on the different factors. The main goal was to analyze the influence of science and technology factors on the economic growth. Gross domestic product (GDP) was used as economic growth indicator. The method of adaptive neuro fuzzy inference system (ANFIS) was applied to the data in order to select the most influential factors for the GDP growth rate forecasting. Ten inputs are considered: research and development (R&D) expenditure in GDP, scientific and technical journal articles, patent applications for nonresidents, patent applications for residents, trademark applications for nonresidents, trademark applications for residents, total trademark applications, researchers in R&D, technicians in R&D and high-technology exports. The ANFIS process for variable selection was also implemented in order to detect the predominant factors affecting the forecasting of GDP growth rate.


ANFIS Forecasting Gross domestic product Science and technology 



This paper is supported by Project Grant 47005 “Research and development of a scientific platform for management of science and technology in Serbia” financed by Ministry of Education and Science, Republic of Serbia.


  1. Al Ghandoor, A., Samhouri, M.: Electricity consumption in the industrial sector of Jordan: application of multivariate linear regression and adaptive neuro-fuzzy techniques, Jordan. J. Mech. Ind. Eng. 3(1), 69–76 (2009)Google Scholar
  2. Barsoum, F., Stankiewicz, S.: Forecasting GDP growth using mixed-frequency models with switching regimes. Int. J. Forecast. 31, 33–50 (2015)CrossRefGoogle Scholar
  3. Dias, F., Pinheiro, M., Rua, A.: Forecasting Portuguese GDP with factor models: pre- and post-crisis evidence. Econ. Model. 44, 266–272 (2015)CrossRefGoogle Scholar
  4. Ekici, B.B., Aksoy, U.T.: Prediction of building energy needs in early stage of design by using ANFIS. Expert Syst. Appl. 38, 5352 (2011)CrossRefGoogle Scholar
  5. Feng, L., Zhang, J.: Application of artificial neural networks in tendency forecasting of economic growth. Econ. Model. 40, 76–80 (2014)CrossRefGoogle Scholar
  6. Ferrarini, B., Scaramozzino, P.: Production complexity, adaptability and economic growth. Struct. Change Econ. Dyn. 37, 52–61 (2016)CrossRefGoogle Scholar
  7. Inal, M.: Determination of dielectric properties of insulator materials by means of ANFIS: a comparative study. Expert Syst. Appl. 195, 34 (2008)Google Scholar
  8. Jang, J.-S.R.: ANFIS: adaptive-network-based fuzzy inference systems. IEEE Trans. Syst. Man Cybern. 23, 665–685 (1993)CrossRefGoogle Scholar
  9. Jos Jansen, W., Jin, X., de Winter, J.M.: Forecasting and nowcasting real GDP: comparing statistical models and subjective forecasts. Int. J. Forecast. 32, 411–436 (2016)CrossRefGoogle Scholar
  10. Kapetanios, G., Marcellino, M., Papailias, F.: Forecasting inflation and GDP growth using heuristic optimisation of information criteria and variable reduction methods. Comput. Stat. Data Anal. (2015). doi: 10.1016/j.csda.2015.02.017 CrossRefGoogle Scholar
  11. Khajeh, A., Modarress, H., Rezaee, B.: Application of adaptive neuro-fuzzy inference system for solubility prediction of carbon dioxide in polymers. Expert Syst. Appl. 36, 5728 (2009)CrossRefGoogle Scholar
  12. Krkoska, L., Teksoz, U.: Accuracy of GDP growth forecasts for transition countries: ten years of forecasting assessed. Int. J. Forecast. 23, 29–45 (2007)CrossRefGoogle Scholar
  13. Krkoska, L., Utku, T.: How reliable are forecasts of GDP growth and inflation for countries with limited coverage? Econ. Syst. 33, 376–388 (2009)CrossRefGoogle Scholar
  14. Kurnaz, S., Cetin, O., Kaynak, O.: Adaptive neuro-fuzzy inference system based autonomous flight control of unmanned air vehicles. Expert Syst. Appl. 37, 1229–1234 (2010)CrossRefGoogle Scholar
  15. Lo, S.P., Lin, Y.Y.: The prediction of wafer surface non-uniformity using FEM and ANFIS in the chemical mechanical polishing process. J. Mater. Process. Technol. 168, 250 (2005)CrossRefGoogle Scholar
  16. Modis, T.: Long-term GDP forecasts and the prospects for growth. Technol. Forecast. Soc. Change 80, 1557–1562 (2013)CrossRefGoogle Scholar
  17. Petković, D.: Adaptive neuro-fuzzy fusion of sensor data. Infrared Phys. Technol. 67, 222–228 (2014). doi: 10.1016/j.infrared.2014.07.031 CrossRefGoogle Scholar
  18. Petković, D.: Adaptive neuro-fuzzy approach for estimation of wind speed distribution. Electr. Power Energy Syst. 73, 389–392 (2015a). doi: 10.1016/j.ijepes.2015.05.039 CrossRefGoogle Scholar
  19. Petković, D.: Adaptive neuro-fuzzy optimization of the net present value and internal rate of return of a wind farm project under wake effect. JCC Bus. Econ. Res. J. 8, 11–28 (2015b). doi: 10.7835/jcc-berj-2015-0102 CrossRefGoogle Scholar
  20. Petković, D., Ćojbašić, Ž.: Adaptive neuro-fuzzy estimation of automatic nervous system parameters effect on heart rate variability. Neural Comput. Appl. 21(8), 2065–2070 (2012)CrossRefGoogle Scholar
  21. Petković, D., Pavlović, D.N.: Applications and adaptive neuro-fuzzy estimation of conductive silicone rubber properties. Strojarstvo: časopis za teoriju i praksu u strojarstvu 54(3), 197–203 (2013)Google Scholar
  22. Petković, D., Issa, M., Pavlović, N.D., Pavlović, N.T., Zentner, L.: Adaptive neuro-fuzzy estimation of conductive silicone rubber mechanical properties. Expert Syst. Appl. 39(10), 9477–9482 (2012a). ISSN 0957-4174CrossRefGoogle Scholar
  23. Petković, D., Issa, M., Pavlović, N.D., Zentner, L., Ćojbašić, Ž.: Adaptive neuro fuzzy controller for adaptive compliant robotic gripper. Expert Syst. Appl. 39(18), 13295–13304 (2012b). ISSN 0957-4174CrossRefGoogle Scholar
  24. Petković, D., Shamshirband, S., Anuar, N.B., Sabri, A.Q.M., Rahman, Z.B.A., Pavlović, N.D.: Input displacement neuro-fuzzy control and object recognition by compliant multi-fingered passively adaptive robotic gripper. J. Intell. Robot. Syst. doi: 10.1007/s10846-015-0182-6 CrossRefGoogle Scholar
  25. Petković, D., Pavlović, D.N., Ćojbašić, Ž., Pavlović, T.N.: Adaptive neuro fuzzy estimation of underactuated robotic gripper contact forces. Expert Syst. Appl. 40(1), 281–286 (2013a)CrossRefGoogle Scholar
  26. Petković, D., Ćojbašić, Ž., Lukić, S.: Adaptive neuro fuzzy selection of heart rate variability parameters affected by autonomic nervous system. Expert Syst. Appl. 40(11), 4490–4495 (2013b)CrossRefGoogle Scholar
  27. Petković, D., Ćojbašić, Ž., Nikolić, V.: Adaptive neuro-fuzzy approach for wind turbine power coefficient estimation. Renew. Sustain. Energy Rev. 28, 191–195 (2013c)CrossRefGoogle Scholar
  28. Petković, D., Pavlović, T.N., Shamshirband, S., Mat Kiah, M.L., Anuar, N.B., Idna Idris, M.Y.: Adaptive neuro-fuzzy estimation of optimal lens system parameters. Opt. Lasers Eng. 55, 84–93 (2014a)CrossRefGoogle Scholar
  29. Petković, D., Ćojbašić, Ž., Nikolić, V., Shamshirband, S., Mat Kiah, M.L., Anuar, N.B., Abdul Wahab, A.W.: Adaptive neuro-fuzzy maximal power extraction of wind turbine with continuously variable transmission. Energy 64, 868–874 (2014b)CrossRefGoogle Scholar
  30. Petković, D., Shamshirband, S., Pavlović, T.N., Anuar, N.B., Mat Kiah, M.L.: Modulation transfer function estimation of optical lens system by adaptive neuro-fuzzy methodology. Opt. Spectrosc. 117(1), 121–131 (2014c). doi: 10.7868/S0030403414070046 CrossRefGoogle Scholar
  31. Petković, D., Shamshirband, S., Anuar, N.B., Md Nasir, M.H.N., Pavlović, T.N., Akib, S.: Adaptive neuro-fuzzy prediction of modulation transfer function of optical lens system. Infrared Phys. Technol. 65, 54–60 (2014d). doi: 10.7868/S0030403414070046 CrossRefGoogle Scholar
  32. Petković, D., Shamshirband, S., Ćojbašić, Ž., Nikolić, V., Anuar, N.B., Md Sabri, A.Q., Akib, S.: Adaptive neuro-fuzzy estimation of building augmentation of wind turbine power. Comput. Fluids 97(25), 188–194 (2014e)CrossRefGoogle Scholar
  33. Petković, D., Shamshirband, S., Iqbal, J., Anuar, N.B., Pavlović, D.N., Mat Kiah, M.L.: Adaptive neuro-fuzzy prediction of grasping object weight for passively compliant gripper. Appl. Soft Comput. 22, 424–431 (2014f)CrossRefGoogle Scholar
  34. Petković, D., Issa, M., Pavlović, D.N., Zentner, L., Daud, M.N.R., Shamshirband, S.: Contact positions estimation of sensing structure using adaptive neuro-fuzzy inference system. Kybernetes 43(5), 783–796 (2014g)CrossRefGoogle Scholar
  35. Petković, D., Shamshirband, S., Pavlović, D.N., Saboohi, H., Altameem, A.T., Gani, A.: Determining the joints most strained in an underactuated robotic finger by adaptive neuro-fuzzy methodology. Adv. Eng. Softw. 77, 28–34 (2014h)CrossRefGoogle Scholar
  36. Petković, D., Shamshirband, S., Anuar, N.B., Naji, S., Mat Kiah, M.L., Gani, A.: Adaptive neuro-fuzzy evaluation of wind farm power production as function of wind speed and direction. Stoch. Environ. Res. Risk Assess. 29(3), 793–802 (2015a). doi: 10.1007/s00477-014-0901-8 CrossRefGoogle Scholar
  37. Petković, D., Issa, M., Pavlović, D.N., Zentner, L.: Potential of adaptive neuro-fuzzy inference system for contact positions detection of sensing structure. Measurement 61, 234–242 (2015b). doi: 10.1016/j.measurement.2014.10.040 CrossRefGoogle Scholar
  38. Petković, D., Shamshirband, S., Tong, C.W., Al-Shammari, E.T.: Generalized adaptive neuro-fuzzy based method for wind speed distribution prediction. Flow Meas. Instrum. 43, 47–52 (2015c). doi: 10.1016/j.flowmeasinst.2015.03.003 CrossRefGoogle Scholar
  39. Petković, D., Gocić, M., Trajković, S., Shamshirband, S., Motamedi, S., Hashim, R., Bonakdari, H.: Determination of the most influential weather parameters on reference evapotranspiration by adaptive neuro-fuzzy methodology. Comput. Electron. Agric. 114, 277–284 (2015d). doi: 10.1016/j.compag.2015.04.012 CrossRefGoogle Scholar
  40. Petković, D., Shamshirband, S., Abbasi, A., Kiani, K., Al-Shammari, E.T.: Prediction of contact forces of underactuated finger by adaptive neuro fuzzy approach. Mech. Syst. Signal Process. 64–65, 520–527 (2015e). doi: 10.1016/j.ymssp.2015.03.013 CrossRefGoogle Scholar
  41. Singh, R., Kianthola, A., Singh, T.N.: Estimation of elastic constant of rocks using an ANFIS approach. Appl. Soft Comput. 12, 40–45 (2012)CrossRefGoogle Scholar
  42. Tian, L., Collins, C.: Adaptive neuro-fuzzy control of a flexible manipulator. Mechatronics 15, 1305–1320 (2005)CrossRefGoogle Scholar
  43. Zeira, J., Zoabi, H.: Economic growth and sector dynamics. Eur. Econ. Rev. 79, 1–15 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Dušan Marković
    • 1
    Email author
  • Igor Mladenović
    • 2
  • Miloš Milovančević
    • 1
  1. 1.University of Niš, Faculty of Mechanical EngineeringNišSerbia
  2. 2.University of Niš, Faculty of EconomicsNišSerbia

Personalised recommendations