Advertisement

Queueing Systems

, Volume 91, Issue 1–2, pp 171–203 | Cite as

An asymptotic approximation for TCP CUBIC

  • Sudheer PoojaryEmail author
  • Vinod Sharma
Article
  • 15 Downloads

Abstract

In this paper, we derive an expression for computing the average window size of a single TCP CUBIC connection under random losses. For this we consider a throughput expression for TCP CUBIC computed earlier under deterministic periodic packet losses. We validate this expression theoretically. We then use insights from the deterministic loss-based model to scale appropriately a sequence of Markov chains with random losses indexed by the probability of loss p. We show that this sequence converges to a limiting Markov chain as p tends to 0. The stationary distribution of the limiting Markov chain is then used to derive the average window size for small packet error rates. We then use a simple approximation to extend our current results with negligible queuing to a setup with multiple connections and non-negligible queuing. We validate our model and approximations via simulations.

Keywords

TCP CUBIC High-speed TCP Asymptotic approximation Performance analysis 

Mathematics Subject Classification

68M12 68M11 60J10 90B18 

References

  1. 1.
    Huston, G.: Gigabit TCP. Internet Protoc. J. 9, 2–26 (2006)Google Scholar
  2. 2.
    Floyd, S.: HighSpeed TCP for large congestion windows. RFC 3649 (Experimental), Internet Engineering Task Force, (2003)Google Scholar
  3. 3.
    Afanasyev, A., Tilley, N., Reiher, P., Kleinrock, L.: Host-to-host congestion control for TCP. IEEE Commun. Surv. Tutor. 12(3), 304–342 (2010)CrossRefGoogle Scholar
  4. 4.
    Yang, P., Shao, J., Luo, W., Xu, L., Deogun, J., Lu, Y.: TCP congestion avoidance algorithm identification. IEEE/ACM Trans. Netw. 22(4), 1311–1324 (2014)CrossRefGoogle Scholar
  5. 5.
    Bonald, T.: Comparison of TCP Reno and TCP Vegas: efficiency and fairness. Perform. Eval. 36–37, 307–332 (1999)CrossRefGoogle Scholar
  6. 6.
    Liu, Y., Lo Presti, F., Misra, V., Towsley, D., Gu, Y.: Fluid Models and solutions for large-scale IP networks. In: Proceedings of the 2003 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, ser. SIGMETRICS ’03, pp. 91–101. ACM, New York (2003)Google Scholar
  7. 7.
    Vojnovic, M., Le Boudec, J.-Y., Boutremans, C.: Global fairness of additive-increase and multiplicative-decrease with heterogeneous round-trip times. In: INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE, vol. 3, pp. 1303–1312. IEEE, Washington (2000)Google Scholar
  8. 8.
    Kunniyur, S., Srikant, R.: End-to-end congestion control schemes: utility functions, random losses and ECN marks. IEEE/ACM Trans. Netw. 11(5), 689–702 (2003)CrossRefGoogle Scholar
  9. 9.
    Reddy, V.V., Sharma, V., Suma, M.B.: Providing QoS to TCP and real time connections in the internet. Queueing Syst. Theory Appl. 46(3/4), 461–480 (2004)CrossRefGoogle Scholar
  10. 10.
    Mathis, M., Semke, J., Mahdavi, J., Ott, T.: The macroscopic behavior of the TCP congestion avoidance algorithm. SIGCOMM Comput. Commun. Rev. 27, 67–82 (1997)CrossRefGoogle Scholar
  11. 11.
    Padhye, J., Firoiu, V., Towsley, D.F., Kurose, J.F.: Modeling TCP Reno performance: a simple model and its empirical validation. IEEE/ACM Trans. Netw. 8, 133–145 (2000)CrossRefGoogle Scholar
  12. 12.
    Xue, L., Kumar, S., Cui, C., Park, S.-J.: A study of fairness among heterogeneous TCP variants over 10 Gbps high-speed optical networks. Opt. Switch. Netw. 13, 124–134 (2014)CrossRefGoogle Scholar
  13. 13.
    Jain, S., Raina, G.: An experimental evaluation of CUBIC TCP in a small buffer regime. In: NCC, 2011, pp. 1–5. IEEE, Washington (2011)Google Scholar
  14. 14.
    Weigle, M.C., Sharma, P., Freeman IV, J.: Performance of competing high-speed TCP flows. In: Proceedings of Networking, Coimbra, Portugal, pp. 476–487 (2006)Google Scholar
  15. 15.
    Poojary, S., Sharma, V.: Analytical model for congestion control and throughput with TCP CUBIC connections. In: GLOBECOM. IEEE, Washington (2011)Google Scholar
  16. 16.
    Bao, W., Wong, V.W.S., Leung, V.C.M.: A model for steady state throughput of TCP CUBIC. In: GLOBECOM. IEEE, Washington (2010)Google Scholar
  17. 17.
    Belhareth, S., Sassatelli, L., Collange, D., Lopez-Pacheco, D., Urvoy-Keller, G.: Understanding TCP cubic performance in the cloud: a mean-field approach. In: 2013 IEEE 2nd International Conference on Cloud Networking (CloudNet), pp. 190–194 (2013)Google Scholar
  18. 18.
    Cardwell, N., Cheng, Y., Gunn, C.S., Yeganeh, S.H., Jacobson, V.: BBR: Congestion-based congestion control. Queue 14(5), 50 (2016)Google Scholar
  19. 19.
    Cardwell, N., Cheng, Y., Yeganeh, S.H., Jacobson, V.: BBR congestion control. Working Draft, IETF Secretariat, Internet-Draft draft-cardwell-iccrg-bbr-congestion-control-00 (2017)Google Scholar
  20. 20.
    Cardwell, N., Savage, S., Anderson, T.: Modeling TCP latency. In: IEEE Infocom, pp. 1724–1751 (2000)Google Scholar
  21. 21.
    Poojary, S., Sharma, V.: Approximate theoretical models for TCP connections using different high speed congestion control algorithms in a multihop network. In: 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 559–566 (2013)Google Scholar
  22. 22.
    Dumas, V., Guillemin, F., Robert, P.: A Markovian analysis of additive-increase multiplicative-decrease algorithms. Adv. Appl. Probab. 34(1), 85–111 (2002)CrossRefGoogle Scholar
  23. 23.
    Poojary, S., Sharma, V.: An asymptotic approximation for TCP compound. Queueing Syst. 85(3), 211–247 (2017)CrossRefGoogle Scholar
  24. 24.
    Tan, K., Song, J., Zhang, Q., Sridharan, M.: A compound TCP approach for high-speed and long distance networks. In: IEEE Infocom (2006)Google Scholar
  25. 25.
    Gupta, A., Sharma, V.: A unified approach for analyzing persistent, non-persistent and ON-OFF TCP sessions in the internet. Perform. Eval. 63(2), 79–98 (2006)CrossRefGoogle Scholar
  26. 26.
    Ha, S., Rhee, I., Xu, L.: CUBIC: a new TCP-friendly high-speed TCP variant. SIGOPS Oper. Syst. Rev. 42, 64–74 (2008)CrossRefGoogle Scholar
  27. 27.
    Asmussen, S.: Applied Probability and Queues, 2nd ed., ser. Applications of Mathematics (New York). Springer, New York (2003), vol. 51 Stochastic Modelling and Applied ProbabilityGoogle Scholar
  28. 28.
    Tweedie, R.: The existence of moments for stationary Markov chains. J. Appl. Probab. 20, 191–196 (1983)CrossRefGoogle Scholar
  29. 29.
    Ha, S., Hemminger, S.: TCP CUBIC source code, ver. 2.3. http://lxr.free-electrons.com/source/net/ipv4/tcp_cubic.c?v=4.2. Accessed 08 Dec 2015
  30. 30.
    Kalashnikov, V.V.: Mathematical Methods in Queuing Theory, vol. 271. Springer, Berlin (1993)Google Scholar
  31. 31.
    Poojary, S., Sharma, V.: Analysis of multiple flows using different high speed TCP protocols on a general network. Perform. Eval. 104, 42–62 (2016)CrossRefGoogle Scholar
  32. 32.
    Bertsekas, D., Gallager, R.: Data Networks, 2nd edn. Prentice-Hall Inc, Upper Saddle River (1992)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CERI/LIAUniversity of AvignonAvignonFrance
  2. 2.Department of ECEIndian Institute of ScienceBangaloreIndia
  3. 3.Qualcomm India Private LimitedBangaloreIndia

Personalised recommendations