Advertisement

Phytochemical Properties of Satureja kitaibelii, Potential Natural Antioxidants: a New Insight

  • Kristina GopčevićEmail author
  • Slavica Grujić
  • Jelena Arsenijević
  • Ivanka Karadžić
  • Lidija Izrael-Živković
  • Zoran Maksimović
Original Paper

Abstract

Satureja kitaibelii Wierzb. ex Heuff. has a great importance in Serbian ethnopharmacology/herbal traditional medicine, as well as a flavoring food additive. Ethanol extract of aerial parts of Satureja kitaibelii analyzed by liquid chromatography-mass spectrometry revealed the presence of 18 compounds among which the most abundant were phenolic acids, flavonoids, jasmonic acid derivatives and rosmanol. The extracts were rich in total phenolics and flavonoid contents, while rosmarinic acid was the dominant compound (18.30–29.52 mg/g). As assessments of antioxidant properties of natural extracts are important because of their growing use in medicine and food industry, antioxidant activity of ethanol extracts of Satureja kitaibelii was analyzed by several assays. The half maximal scavenging capacity (SC50) of 2,2′-diphenyl-1-picrylhydrazyl ranging from 71.20 to 125.65 μg/mL, the total antioxidant capacity from 272.37 to 714.12 mg ascorbic acid/g, and ferric ion reducing antioxidant power ranging from 0.74 to 1.94 μmol Fe/mg, clearly imply a significant antioxidant potential of Satureja kitaibelii. The extracts inhibit growth of Micrococcus luteus and Pseudomonas aeruginosa with inhibition zones 20–30 and 16–26 mm, respectively. Antioxidant and antibacterial activity of compounds identified in extracts suggest a great potential for Satureja kitaibelii application as valuable food ingredient.

Keywords

S. Kitaibelii Ethanol extracts LC-PDA-MS analysis Antioxidant activity Natural antioxidants 

Abbreviations

DPPH

2,2-diphenyl-1-picrylhydrazyl

TPTZ

2,4,6-tris(2-pyridyl)-s-triazine

LC-MS

Liquid chromatography – mass spectrometry

RA

Rosmarinic acid

ESI

Electron spray ionization

PDA

Photo diode array detector

UV

Ultra violet

Rt

Retention time

TPC

Total phenolic content

TFC

Total flavonoid content

TAC

Total antioxidant capacity

GA

Gallic acid

AA

Ascorbic acid

FRAP

Ferric ion reducing antioxidant power

Notes

Acknowledgements

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grants No.175056, 173029, ON 173021 and III43004).

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflict of interest.

Human and Animal Studies

This article does not contain any studies with human or animal subjects.

Supplementary material

11130_2019_716_MOESM1_ESM.pdf (74 kb)
ESM 1 (PDF 73 kb)

References

  1. 1.
    Reische DW, Lillard DA, Eitenmiller RR (1998) Antioxidants in food lipids. In: Ahoh CC, Min DB (eds) Chemistry, nutrition and biotechnology. Marcel Dekker, New York, pp 423–448Google Scholar
  2. 2.
    Brunetti C, Di Ferdinando M, Fini A, Pollastri S, Tattini M (2013) Flavonoids as antioxidants and developmental regulators: relative significance in plants and humans. Int J Mol Sci 14:3540–3555CrossRefGoogle Scholar
  3. 3.
    Pistelli L, Giorgi I (2012) Antimicrobial properties of flavonoids. In: Patra AK (ed) Dietary phytochemicals and microbes. Springer Science+ Business Media, Dordrecht, pp 33–91CrossRefGoogle Scholar
  4. 4.
    Batra P, Sharma AK (2013) Anti-cancer potential of flavonoids: recent trends and future perspectives. 3 Biotech 3(6):439–459.  https://doi.org/10.1007/s13205-013-0117-5 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    López-Cobo A, Gómez-Caravaca AM, Švarc-Gajić J, Segura-Carretero A, Fernández-Gutiérrez A (2015) Determination of phenolic compounds and antioxidant activity of a Mediterranean plant: the case of Satureja montana subsp. kitaibelii. J Funct Foods 18:1167–1178CrossRefGoogle Scholar
  6. 6.
    Dróżdż P, Šėžienė V, Pyrzynska K (2017) Phytochemical properties and antioxidant activities of extracts from wild blueberries and lingonberries. Plant Foods Hum Nutr 72:360–364CrossRefGoogle Scholar
  7. 7.
    Ball PW (1974) Genus Satureja L. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM (eds) Flora Europaea 3. Cambridge University Press, CambridgeGoogle Scholar
  8. 8.
    Zlatković B, Bogosavljev S, Radivojević A, Pavlović M (2014) Traditional use of the native medicinal plant resource of Mt. Rtanj (Eastern Serbia): ethnobotanical evaluation and comparison. J Ethnopharmacol 151:704–713CrossRefGoogle Scholar
  9. 9.
    Momtaz S, Abdollahi M (2010) An update on pharmacology of Satureja species; from antioxidant, antimicrobial, antidiabetes and anti-hyperlipidemic to reproductive stimulation. Int J Pharmacol 6(4):346–353CrossRefGoogle Scholar
  10. 10.
    Tepe B, Cilkiz M (2016) A pharmacological and phytochemical overview on Satureja. Pharm Biol 54(3):375–412CrossRefGoogle Scholar
  11. 11.
    Kundaković T, Milenković M, Zlatković S, Kovačević N, Nikolić G (2011) Composition of Satureja kitaibelii essential oil and its antimicrobial activity. Nat Prod Commun 6:1353–1356PubMedGoogle Scholar
  12. 12.
    Stanojković T, Kolundžija B, Ćirić A, Soković M, Nikolić D, Kundaković T (2013) Cytotoxicity and antimicrobial activity of Satureja kitaibelii Wierzb. Ex Heuff (Lamiaceae). Dig J Nanomat Bios 8(2):845–854Google Scholar
  13. 13.
    Ćetković GS, Čanadanović JM, Djilas SM, Tumbas VT, Markov SL, Cvetković DD (2007) Antioxidant potential, lipid peroxidation inhibition and antimicrobial activities of Satureja montana L. subsp. kitaibelii extracts. Int J Mol Sci 8(10):1013–1027CrossRefGoogle Scholar
  14. 14.
    Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158Google Scholar
  15. 15.
    Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269:337–341CrossRefGoogle Scholar
  16. 16.
    Takao T, Kitatani F, Watanabe N, Yagi A, Sakata A (1994) Simple screening method for antioxidants and isolation of several antioxidants produced by marine Bacteria from fish and shellfish. Biosci Biotechnol Biochem 58(10):1780–1783CrossRefGoogle Scholar
  17. 17.
    Szőllősi R, Szőllősi Varga I (2002) Total antioxidant power in some species of Labiatae (adaptation of FRAP method). Acta Biologica Szegediensis 46(3–4):125–127Google Scholar
  18. 18.
    Acar JF, Goldstein FW (1996) Disc susceptibility test. In: Lorian V (ed) Antibiotics in laboratory medicine. Williams and Wilkins, Baltimore, pp 1–52Google Scholar
  19. 19.
    Moghadam SE, Samad N, Ebrahimi SN et al (2015) Metabolite profiling for caffeic acid oligomers in Satureja biflora. Ind Crop Prod 76(15):892–899CrossRefGoogle Scholar
  20. 20.
    Pacifico S, Galasso S, Piccolella S, Kretschmer N, Pan SP, Marciano S, Bauer R, Monaco P (2015) Seasonal variation in phenolic composition and antioxidant and anti-inflammatory activities of Calamintha nepeta (L.) Savi. Food Res Int 69(1):121–132CrossRefGoogle Scholar
  21. 21.
    Galasso S, Pacifico S, Kretschmer N, Pan SP, Marciano S, Piccolella S, Monaco P, Bauer R (2014) Influence of seasonal variation on Thymus longicaulis C. Presl. Chemical composition and its antioxidant and anti-inflammatory properties. Phytochemistry 107:80–90CrossRefGoogle Scholar
  22. 22.
    Damašius J, Venskutonis PR, Kaškonienėb V, Maruška A (2014) Fast screening of the main phenolic acids with antioxidant properties in common spices using on-line HPLC/UV/DPPH radical scavenging assay. Anal Methods-UK 6:2774–2779CrossRefGoogle Scholar
  23. 23.
    Tsimogiannis D, Choulitoudi E, Bimpilas A, Mitropoulou G, Kourkoutas Z, Oreopoulou V (2017) Exploitation of the biological potential of Satureja thymbra essential oil and distillation by-products. J Appl Res Med Aromat Plants 4:12–20Google Scholar
  24. 24.
    Hajdari A, Mustafa B, Kaçiku A et al (2016) Chemical composition of the essential oil, total phenolics, total flavonoids and antioxidant activity of methanolic extracts of Satureja Montana L. Rec Nat Prod 10(6):750–760Google Scholar
  25. 25.
    Zeljković Ćavar S, Topčagić A, Požgan F, Štefane B, Tarkowski P, Maksimović M (2015) Antioxidant activity of natural and modified phenolic extracts from Satureja montana L. Ind Crop Prod 76:1094–1099CrossRefGoogle Scholar
  26. 26.
    Serrano C, Matos O, Teixeira B, Ramos C, Neng N, Nogueira J, Nunes ML, Marques A (2011) Antioxidant and antimicrobial activity of Satureja montana L. extracts. J Sci Food Agric 91:1554–1560CrossRefGoogle Scholar
  27. 27.
    Sacchetti G, Maietti S, Muzzoli M, Scaglianti M, Manfredini S, Radice M, Bruni R (2005) Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in food. Food Chem 91:621–632CrossRefGoogle Scholar
  28. 28.
    Choirunnisa A, Fidrianny I, Ruslan K (2016) Comparison of five antioxidant assays for antioxidant capacity from three Solanum sp. extracts. Asian J Pharm Clin Res 9(Suppl 2):123–128.  https://doi.org/10.22159/ajpcr.2016.v9s2.13155 CrossRefGoogle Scholar
  29. 29.
    Arteaga J, Ruiz-Montoya M, Palma A, Alonso-Garrido G, Pintado S, Rodríguez-Mellado J (2012) Comparison of the simple cyclic voltammetry (CV) and DPPH assays for the determination of antioxidant capacity of active principles. Molecules 17:5126–5138CrossRefGoogle Scholar
  30. 30.
    Firuzi O, Lacanna A, Petrucci R, Marrosu G, Saso L (2005) Evaluation of the antioxidant activity of flavonoids by ferric reducing antioxidant powerQ assay and cyclic voltammetry. Biochim Biophys Acta 1721:174–184CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry Faculty of MedicineUniversity of BelgradeBelgradeSerbia
  2. 2.Institute of Botany and Botanical Garden Jevremovac, Faculty of BiologyUniversity of BelgradeBelgradeSerbia
  3. 3.Department for Pharmacognosy, Faculty of PharmacyUniversity of BelgradeBelgradeSerbia

Personalised recommendations