Plant Foods for Human Nutrition

, Volume 74, Issue 4, pp 495–500 | Cite as

Spray-Dried Yerba Mate Extract Capsules: Clinical Evaluation and Antioxidant Potential in Healthy Individuals

  • Aline Minuzzi Becker
  • Heloisa Pamplona Cunha
  • Antônio Corrêa Lindenberg
  • Fernanda de Andrade
  • Tales de Carvalho
  • Brunna Cristina Bremer Boaventura
  • Edson Luiz da SilvaEmail author
Original Paper


The aim of the present study was to evaluate the clinical effects and antioxidant potential of spray-dried yerba mate extract (SDME) capsules in healthy individuals. Fourteen healthy volunteers consumed three capsules of SDME three times daily. Measurements were carried out at the baseline and after 7, 30, and 60 days of SDME capsules intake. Electrocardiogram, hematological, urinary, and biochemical parameters analyzed remained within the normal values during all the study. SDME capsules ingestion increased significantly serum antioxidant capacity (after 7 and 30 days) and reduced glutathione values (after 7 and 60 days), and the superoxide dismutase (after 7, 30, and 60 days), catalase (after 7 and 30 days), and paraoxonase-1 activities (after 7 days); and decreased lipid hydroperoxides (after 30 and 60 days) and thiobarbituric acid reactive substances levels (after 7 and 30 days). No change was observed for glutathione peroxidase activity after SDME capsules intake. The present study showed that SDME capsules ingestion by healthy individuals did not promote clinical changes and promoted an increase of antioxidant biomarkers with a concomitant decrease of lipid peroxidation biomarkers in a short and prolonged manner.


Ilex paraguariensis Capsules Bioactive compounds Oxidative stress Antioxidants Humans 





Ferric reducing antioxidant potential


Glutathione peroxidase


Reduced glutathione


Lipid hydroperoxides


Spray-dried yerba mate extract


Superoxide dismutase


Thiobarbituric acid reactive substances


Trolox equivalent antioxidant capacity



We are grateful to volunteers who participated in the study. The authors would like to thank Leao Alimentos e Bebidas Co. (Curitiba-PR, Brazil) for providing plant material. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that there are no conflicts of interest.

Supplementary material

11130_2019_764_MOESM1_ESM.docx (15 kb)
Table S1 (DOCX 14 kb)
11130_2019_764_MOESM2_ESM.docx (14 kb)
Table S2 (DOCX 14 kb)
11130_2019_764_MOESM3_ESM.docx (15 kb)
Table S3 (DOCX 15 kb)
11130_2019_764_MOESM4_ESM.docx (15 kb)
Table S4 (DOCX 15 kb)


  1. 1.
    Riachi LG, De Maria CAB (2017) Yerba mate: an overview of physiological effects in humans. J Funct Food 38:308–320CrossRefGoogle Scholar
  2. 2.
    Da Silveira TFF, Meinhart AD, de Souza TCL, Cunha ECE, de Moraes MR, Filho JT, Godoy HT (2017) Optimization of the preparation conditions of yerba mate tea beverage to maximize chlorogenic acids extraction. Plant Foods Hum Nutr 72:219–223CrossRefGoogle Scholar
  3. 3.
    De Morais EC, Stefanuto A, Klein GA, Boaventura BCB, de Andrade F, Wazlawik E, Di Pietro PF, Maraschin M, Da Silva EL (2009) Consumption of yerba mate (Ilex paraguariensis) improves serum lipid parameters in healthy dyslipidemic subjects and provides an additional LDL-cholesterol reduction in individuals on statin therapy. J Agric Food Chem 57:8316–8324Google Scholar
  4. 4.
    Boaventura BCB, Di Pietro PF, Klein GA, Stefanuto A, De Morais EC, De Andrade F, Wazlavik E, Da Silva EL (2013) Antioxidant potential of mate tea (Ilex paraguariensis) in type 2 diabetic mellitus and pre-diabetic individuals. J Funct Food 5:1057–1064CrossRefGoogle Scholar
  5. 5.
    Andrade F, Albuquerque CACD, Maraschin M, Da Silva EL (2012) Safety assessment of yerba mate (Ilex paraguariensis) dried extract: results of acute and 90 days subchronic toxicity studies in rats and rabbits. Food Chem Toxicol 50:328–334CrossRefGoogle Scholar
  6. 6.
    Singleton VL, Orthofer R, Lamuela-Raventós RM (1998) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Method Enzymol 299:152–178CrossRefGoogle Scholar
  7. 7.
    Gnoatto SCB, Schenkel EP, Bassani VL (2005) HPLC method to assay total saponins in Ilex paraguariensis aqueous extract. J Braz Chem Soc 16:723–726CrossRefGoogle Scholar
  8. 8.
    Fan JP, He CH (2006) Simultaneous quantification of three major bioactive triterpene acids in the leaves of Diospyros kaki by high performance liquid chromatography method. J Pharmaceut Biomed 41:950–956CrossRefGoogle Scholar
  9. 9.
    Strassmann BB, Vieira AR, Pedrotti EL, Morais HNF, Dias PF, Maraschin M (2008) Quantitation of methylxanthinic alkaloids and phenolic compounds in mate (Ilex paraguariensis) and their effects on blood vessel formation in chick embryos. J Agric Food Chem 56:8348–8353CrossRefGoogle Scholar
  10. 10.
    Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76CrossRefGoogle Scholar
  11. 11.
    Pellegrini N, Visioli F, Buratti S, Brighenti F (2001) Direct analysis of total antioxidant activity of olive oil and studies on the influence of heating. J Agric Food Chem 49:2532–2538CrossRefGoogle Scholar
  12. 12.
    Glenny H, Nelmes P (1996) Handbook of clinical drug research. Blackwell Science, OxfordGoogle Scholar
  13. 13.
    WHO  (1995) World Health Organization. WHO technical report, series 854. Physical status: the use and interpretation of anthropometry. GenevaGoogle Scholar
  14. 14.
    Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888PubMedGoogle Scholar
  15. 15.
    Boveris A, Fraga CG, Varsavsky AI, Koch OR (1983) Increased chemiluminescence and superoxide production in the liver of chronically ethanol treated rats. Arch Biochem Biophys 227:534–541CrossRefGoogle Scholar
  16. 16.
    Wendel A (1981) Glutathione peroxidase. Method Enzymol 77:325–333CrossRefGoogle Scholar
  17. 17.
    Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126Google Scholar
  18. 18.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  19. 19.
    Sentí M, Tomás M, Anglada R, Elosua R, Marrugat J, Covas M, Fitó M (2003) Interrelationship of smoking, paraoxonase activity, and leisure time physical activity: a population-based study. Eur J Intern Med 14:178–184CrossRefGoogle Scholar
  20. 20.
    Nourooz-Zadeh J, Tajaddini-Sarmadi J, Wolff SP (1994) Measurement of plasma hydroperoxide concentrations by the ferrous oxidation-xylenol orange assay in conjunction with triphenylphosphine. Anal Biochem 220:403–409CrossRefGoogle Scholar
  21. 21.
    Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421Google Scholar
  22. 22.
    Boaventura BCB, Da Silva EL, Liu RH, Prudêncio ES, Di Pietro PF, Becker AM, Amboni RDMC (2015) Effect of yerba mate (Ilex paraguariensis A. St. Hil.) infusion obtained by freeze concentration technology on antioxidant status of healthy individuals. LWT-Food Sci Technol 62:948–954Google Scholar
  23. 23.
    Fernandes ES, Oliveira Machado M, Becker AM, Andrade F, Maraschin M, Da Silva EL (2012) Yerba mate (Ilex paraguariensis) enhances the gene modulation and activity of paraoxonase-2: in vitro and in vivo studies. Nutrition 28:1157–1164CrossRefGoogle Scholar
  24. 24.
    Gómez-Juaristi M, Martínez-López S, Sarria B, Bravo L, Mateos R (2018) Absorption and metabolism of yerba mate phenolic compounds in humans. Food Chem 240:1028–1038CrossRefGoogle Scholar
  25. 25.
    Mateos R, Baeza G, Sarriá B, Bravo L (2018) Improved LC-MSn characterization of hydroxycinnamic acid derivatives and flavonols in different commercial mate (Ilex paraguariensis) brands. Quantification of polyphenols, methylxanthines, and antioxidant activity. Food Chem 241:232–241CrossRefGoogle Scholar
  26. 26.
    Fang Z, Bhandari B (2011) Effect of spray drying and storage on the stability of bayberry polyphenols. Food Chem 129:1139–1147CrossRefGoogle Scholar
  27. 27.
    Berté KAS, Beux MR, Spada PK, Salvador M, Hoffmann-Ribani R (2011) Chemical composition and antioxidant activity of yerba-mate (Ilex paraguariensis a.St.-Hil., Aquifoliaceae) extract as obtained by spray drying. J Agric Food Chem 59:5523–5527Google Scholar
  28. 28.
    Mateos R, Baeza G, Martínez-López S, Sarriá B, Bravo L (2017) LC–MSn characterization of saponins in mate (Ilex paraguariens, St. Hil) and their quantification by HPLC-DAD. J Food Compos Anal 63:164–170CrossRefGoogle Scholar
  29. 29.
    Bastos MC, Cherobim VF, Reissmann CB, Fernandes-Kaseker J, Gaiad S (2018) Yerba mate: nutrient levels and quality of the beverage depending on the harvest season. J Food Compos Anal 69:1–6CrossRefGoogle Scholar
  30. 30.
    Felippi R, Ribeiro do Valle RM, Da Silva EL (2006) Administration of aqueous extract of Ilex paraguariensis reverses endothelial dysfunction in LDL receptor knockout mice. Free Radic Res 40:S104. CrossRefGoogle Scholar
  31. 31.
    Burtis CA, Ashwood CA, Bruns DE (2013) Tietz textbook of clinical chemistry and molecular diagnostics. Elsevier Health Sciences, LondonGoogle Scholar
  32. 32.
    Greer JP, Arber DA (2013) Wintrobe’s clinical hematology, 13th Ed. Lippincott Willians & WilkinsGoogle Scholar
  33. 33.
    Matsumoto RLT, Bastos DHM, Mendonça S, Nunes VS, Bartchewsky W, Ribeiro ML Jr, Carvalho PDO (2009) Effects of maté tea (Ilex paraguariensis) ingestion on mRNA expression of antioxidant enzymes, lipid peroxidation, and total antioxidant status in healthy young women. J Agric Food Chem 57:1775–1780CrossRefGoogle Scholar
  34. 34.
    Villaño D, Lettieri-Barbato D, Guadagni F, Schmid M, Serafini M (2012) Effect of acute consumption of oolong tea on antioxidant parameters in healthy individuals. Food Chem 132:2102–2106CrossRefGoogle Scholar
  35. 35.
    Lou-Bonafonte JM, Gabás-Rivera C, Navarro MA, Osada J (2017) The search for dietary supplements to elevate or activate circulating paraoxonases. Int J Mol Sci 18:1–18CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Aline Minuzzi Becker
    • 1
  • Heloisa Pamplona Cunha
    • 1
  • Antônio Corrêa Lindenberg
    • 2
  • Fernanda de Andrade
    • 1
  • Tales de Carvalho
    • 3
  • Brunna Cristina Bremer Boaventura
    • 4
    • 5
  • Edson Luiz da Silva
    • 1
    • 2
    • 4
    Email author
  1. 1.Graduate Program in Pharmacy, Health Sciences CenterFederal University of Santa CatarinaFlorianópolisBrazil
  2. 2.Department of Clinical Analyses, Health Sciences CenterFederal University of Santa CatarinaFlorianópolisBrazil
  3. 3.Health Sciences and Sports Center, Center of Cardiology and Exercise MedicineState University of Santa CatarinaFlorianópolisBrazil
  4. 4.Graduate Program in Nutrition, Health Sciences CenterFederal University of Santa CatarinaFlorianópolisBrazil
  5. 5.Department of Nutrition, Health Sciences CenterFederal University of Santa CatarinaFlorianópolisBrazil

Personalised recommendations