Advertisement

Plant Foods for Human Nutrition

, Volume 74, Issue 2, pp 241–246 | Cite as

Effect of High-Energy Milling on Bioactive Compounds and Antioxidant Capacity in Nixtamalized Creole Corn Flours

  • Karla Yuritzi Amador-Rodríguez
  • Fernando Martínez-Bustos
  • Héctor Silos-EspinoEmail author
Original Paper
  • 115 Downloads

Abstract

This study aimed at evaluating the effect of high-energy milling (HEM) and traditional nixtamalization (TN) on bioactive compounds and antioxidant capacity in nixtamalized creole corn flours obtained from a maize genotype cultivated under rainy temporal conditions in the Mexican semidesert. Four creole grains, including San José de Gracia white and blue (WG and BG), Negritas (NG), and Ahualulco white corn grains (SG), were used. For HEM nixtamalization, corn grains were hammer-milled; then, two different conditions were evaluated: treatment H1, with raw flours with 14% moisture content and 1.1% Ca(OH)2, and treatment H2, with raw corn flours with a 23% moisture content and 1.4% Ca(OH)2. The TN process was utilized as a control. TN recorded significant losses in luminosity value L* (p < 0.05), while HEM nixtamalized blue corn flours remained close to -b* values, that is, near to those of raw flour. Anthocyanin content showed higher content values in HEM treatments compared with TN (759.55 and 252.53 mg cyanidin 3-O-β-D-glucoside (C3G)/kg, respectively) (p < 0.05). Total soluble phenolic content was higher in HEM nixtamalization compared with the traditional process, except for WH2 and SH2 (H2 treatment for WG and SG). Two redundant radical scavenging assays were used: antioxidant capacity (DPPH assay) exhibited less value in nixtamalized flours than in raw flour (p < 0.05). Antioxidant activity by (ABTS) assay was higher in HEM than in TN. Nixtamalized flours produced by HEM demonstrated more improvement in nutraceutical properties than those produced employing TN.

Keywords

High-energy milling Nixtamalization Antioxidant capacity Anthocyanins Polyphenols 

Abbreviations

ABTS

2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid)

C3G

Cyanidin-3-glucoside

DPPH

1,1-diphenyl-2-picrylhydrazyl

HEM

High energy milling

TEAC

Trolox equivalent antioxidant capacity

Notes

Acknowledgements

We are grateful for the financial support from CONACyT (Postdoctoral scholarship and research grant to KYAR), TecNM-ITEL (Maestría en Ciencias en Biotecnología Agropecuaria y Doctorado en Ciencias en Biotecnología en Procesos Agropecuarios) and Centro de Investigación y Estudios Avanzados Unidad Querétaro, in addition to technical support from J.J. Veles-Medina, V. Flores-Casamayor, A. A. Escobar-Fuentes, A. García-Gurrola, J.E. Urbina-Álvarez, R.A. Mauricio-Sánchez.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

11130_2019_727_MOESM1_ESM.docx (18 kb)
ESM 1 (DOCX 18.4 kb)

References

  1. 1.
    Del Pozo-Insfran D, Brenes CH, Serna Saldivar SO, Talcott ST (2006) Polyphenolic and antioxidant content of white and blue corn (Zea mays L.) products. Food Res Int 39(6):696–703.  https://doi.org/10.1016/j.foodres.2006.01.014
  2. 2.
    Ragaee S, Guzar I, Dhull N, Seetharaman K (2011) Effects of fiber addition on antioxidant capacity and nutritional quality of wheat bread. LWT - Food Sci Technol 44:2147–2153.  https://doi.org/10.1016/j.lwt.2011.06.016 CrossRefGoogle Scholar
  3. 3.
    Konczack I, Zhang W (2004) Anthocyanins-more than nature’s colours. J Biomed Biotechnol 5:239–240Google Scholar
  4. 4.
    Cavalcanti RN, Santos DT, Meireles MAA (2011) Non-thermal stabilization mechanisms of anthocyanins in model and food systems-an overview. Food Res Int 44:499–509.  https://doi.org/10.1016/j.foodres.2010.12.007 CrossRefGoogle Scholar
  5. 5.
    Valderrama-Bravo C, Gutiérrez-Cortez E, Contreras-Padilla M et al (2012) Constant pressure filtration of lime water (nejayote) used to cook kernels in maize processing. J Food Eng 110:478–486.  https://doi.org/10.1016/j.jfoodeng.2011.12.018 CrossRefGoogle Scholar
  6. 6.
    De la Parra C, Serna Saldivar SO, Liu RH (2007) Effect of processing on the phytochemical profiles and antioxidant activity of corn for production of masa, tortillas, and tortilla chips. J Agric Food Chem 55:4177–4183.  https://doi.org/10.1021/jf063487p
  7. 7.
    Mora-Rochín S, Gaxiola-Cuevas N, Gutiérrez-Uribe JA et al (2016) Effect of traditional nixtamalization on anthocyanin content and profile in Mexican blue maize (Zea mays L.) landraces. LWT - Food Sci Technol 68:563–569.  https://doi.org/10.1016/j.lwt.2016.01.009 CrossRefGoogle Scholar
  8. 8.
    Mora-Rochin S, Gutiérrez-Uribe JA, Serna-Saldivar SO et al (2010) Phenolic content and antioxidant activity of tortillas produced from pigmented maize processed by conventional nixtamalization or extrusion cooking. J Cereal Sci 52:502–508.  https://doi.org/10.1016/j.jcs.2010.08.010 CrossRefGoogle Scholar
  9. 9.
    Delgado-Vargas F, Jiménez AR, Paredes-López O (2000) Natural pigments: carotenoids, anthocyanins, and betalains—characteristics, biosynthesis, processing, and stability. Crit Rev Food Sci Nutr 40:173–289CrossRefGoogle Scholar
  10. 10.
    Eskin D, Zhupanska O, Hamey R et al (2005) Microhydrodynamics of stirred media milling. Powder Technol 156:95–102.  https://doi.org/10.1016/j.powtec.2005.04.004 CrossRefGoogle Scholar
  11. 11.
    Kim S, Holtzapple MT (2005) Lime pretreatment and enzymatic hydrolysis of corn Stover. Bioresour Technol 96:1994–2006.  https://doi.org/10.1016/j.biortech.2005.01.014 CrossRefGoogle Scholar
  12. 12.
    Kim HJ, Lee S, Kim J et al (2013) Environmentally friendly pretreatment of plant biomass by planetary and attrition milling. Bioresour Technol 144:50–56.  https://doi.org/10.1016/j.biortech.2013.06.090 CrossRefGoogle Scholar
  13. 13.
    Lee JH, Kwon JH, Kim TH, Il CW (2017) Impact of planetary ball mills on corn Stover characteristics and enzymatic digestibility depending on grinding ball properties. Bioresour Technol 241:1094–1100.  https://doi.org/10.1016/j.biortech.2017.06.044 CrossRefGoogle Scholar
  14. 14.
    Martínez-Bustos F (2011) Patent number: MX2011007526-A1. Patent assignee name and code: Cinvestav (INVE-non-standard) Derwent primary accession number: 2013-C60737Google Scholar
  15. 15.
    Sterner MH ZR (1984) U.S. patent no. 4,463,022. Washington, DC: U.S. Patent and Trademark OfficeGoogle Scholar
  16. 16.
    Amador-Rodríguez KY, Silos-Espino H, Valera-Montero LL et al (2019) Physico-chemical, thermal, and rheological properties of nixtamalized creole corn flours produced by high-energy milling. Food Chem 283:481-488.  https://doi.org/10.1016/j.foodchem.2019.01.044
  17. 17.
    Salinas Moreno Y, Jaime Fonseca MR, Díaz-Ramírez JL, Alemán de la Torre I (2017) Factors influencing anthocyanin loss during nixtamalization of blue purple maize grain. J Food Sci Technol 54:4493–4500.  https://doi.org/10.1007/s13197-017-2932-x CrossRefGoogle Scholar
  18. 18.
    AACC International (1999) Approved methods of analysis. Method 44-15.02. 11th ed. AACC International, St. Paul, MN, USAGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Karla Yuritzi Amador-Rodríguez
    • 1
  • Fernando Martínez-Bustos
    • 2
  • Héctor Silos-Espino
    • 1
    Email author
  1. 1.Laboratorio de Biotecnología de Alimentos TecNM-Instituto Tecnológico El Llano AguascalientesMexicoMexico
  2. 2.Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN)QuerétaroMexico

Personalised recommendations