Advertisement

Antiproliferative Effect of Amaranth Proteins and Peptides on HT-29 Human Colon Tumor Cell Line

  • Ana Clara Sabbione
  • Fredrick Onyango Ogutu
  • Adriana Scilingo
  • Miao Zhang
  • María Cristina AñónEmail author
  • Tai-Hua MuEmail author
Original Paper
  • 53 Downloads

Abstract

Antiproliferative effect of Amaranthus mantegazzianus proteins and peptides released after simulated gastrointestinal digestion (DH% 37.8 ± 3.8) was investigated on human colon cancer cell line HT-29. Inhibition of proliferation of HT-29 cells was exhibited after a 24 h treatment with different concentrations of amaranth protein isolate (API) and the peptides released after digestion (DGS), presenting IC50 values of 1.35 ± 0.12 and 0.30 ± 0.07 mg soluble protein/mL, respectively. Lactate dehydrogenase assay indicated that both samples caused the loss of membrane integrity and cell lysis over HT-29 cells, and DAPI fluorescence microscopies evidenced typical apoptotic features. Moreover, Annexin V-FITC flow cytometry showed a significant increase of early apoptotic and late apoptotic/necrotic HT-29 cells compared to untreated ones, and caspase-3 assay confirmed the apoptosis induction with a 43.0 ± 10.3 and 65.8 ± 12.7% increase of caspase-3 activity produced by a 2 mg/mL treatment of API and DGS, respectively. In conclusion, amaranth peptides successfully released after simulated gastrointestinal digestion would exert a potential antiproliferative activity over HT-29 tumor cells. This effect was linked to the induction of cell necrosis and apoptosis, supporting the idea of using amaranth proteins as a potential food alternative ingredient for functional foods.

Keywords

Amaranth proteins and peptides HT-29 colon cancer cells Antiproliferative effect Apoptosis and necrosis 

Abbreviations

DGS

Amaranth peptides released after simulated gastrointestinal digestion

API

Amaranth protein isolate

DH%

Degree of hydrolysis

LDH

Lactate dehydrogenase

DAPI

2-(4-Amidinophenyl)-6-indolecarbamidinedihydrochloride, 4′,6-diamidino-2-phenylindole dihydrochloride

Notes

Acknowledgments

Authors are very grateful for the contribution of the researcher Dr. Hongnan Sun.

Funding

This work was supported by International PICT “Vegetable proteins as a source of functional and healthy ingredients” under China-Argentina Binational Center in Food Science and Chinese Ministry of Science and Technology (No. KY201401005).

Compliance with Ethical Standards

Conflict of Interest

Authors Ana Clara Sabbione, Fredrick Onyango Ogutu, Adriana Scilingo, Zhang Miao, María Cristina Añón and Tai-Hua Mu, declare that they have no conflict of interest.

References

  1. 1.
    World Health Organization (WHO) Global Initiative for Cancer Registry Development. Press Release N° 263. http://gco.iarc.fr/. Accessed 12 Sept 2018
  2. 2.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386.  https://doi.org/10.1002/ijc.29210 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Balmain A, Barrett JC, Moses H, Renan MJ (1993) How many mutations are required for tumorigenesis? Implications from human cancer data. Mol Carcinog 7:139–146.  https://doi.org/10.1002/mc.2940070303 CrossRefGoogle Scholar
  4. 4.
    Kris-Etherton PM, Hecker KD, Bonanome A et al (2002) Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med 113:71S–88SCrossRefGoogle Scholar
  5. 5.
    Aphalo P, Martínez EN, Añón MC (2015) Amaranth sprouts: a potential health promoting and nutritive natural food. Int J Food Prop 18:2688–2698.  https://doi.org/10.1080/10942912.2015.1004585 CrossRefGoogle Scholar
  6. 6.
    Delgado MCO, Galleano M, Añón MC, Tironi VA (2015) Amaranth peptides from simulated gastrointestinal digestion: antioxidant activity against reactive species. Plant Foods Hum Nutr 70:27–34.  https://doi.org/10.1007/s11130-014-0457-2 CrossRefPubMedGoogle Scholar
  7. 7.
    Sabbione AC, Nardo AE, Añón MC, Scilingo A (2016) Amaranth peptides with antithrombotic activity released by simulated gastrointestinal digestion. J Funct Foods 20:204–214.  https://doi.org/10.1016/j.jff.2015.10.015 CrossRefGoogle Scholar
  8. 8.
    Moronta J, Smaldini PL, Docena GH, Añón MC (2016) Peptides of amaranth were targeted as containing sequences with potential anti-inflammatory properties. J Funct Foods 21:463–473.  https://doi.org/10.1016/j.jff.2015.12.022 CrossRefGoogle Scholar
  9. 9.
    Bressani R (1994) Composition and nutritional properties of amaranth. In: Paredes-López O (ed) Amaranth: biology, chemistry, and technology. CRC Press, Boca Ratón, pp 185–206Google Scholar
  10. 10.
    Hernández-Ledesma B, Hsieh C-C, de Lumen BO (2009) Lunasin, a novel seed peptide for cancer prevention. Peptides 30:426–430.  https://doi.org/10.1016/j.peptides.2008.11.002 CrossRefPubMedGoogle Scholar
  11. 11.
    Sah BNP, Vasiljevic T, Mckechnie S, Donkor ON (2015) Identification of anticancer peptides from bovine milk proteins and their potential roles in management of cancer: a critical review. Compr Rev Food Sci Food Saf 14:123–138.  https://doi.org/10.1111/1541-4337.12126 CrossRefGoogle Scholar
  12. 12.
    Barrio DA, Añón MC (2010) Potential antitumor properties of a protein isolate obtained from the seeds of Amaranthus mantegazzianus. Eur J Nutr 49:73–82.  https://doi.org/10.1007/s00394-009-0051-9 CrossRefPubMedGoogle Scholar
  13. 13.
    Quiroga AV, Barrio DA, Añón MC (2015) Amaranth lectin presents potential antitumor properties. LWT-Food Sci Technol 60:478–485.  https://doi.org/10.1016/j.lwt.2014.07.035 CrossRefGoogle Scholar
  14. 14.
    Barba de la Rosa AP, Silva-Sánchez C, González de Mejia E (2006) Amaranth: an ancient crop for modern technology. In: Tunick MH, González de Mejía E (eds) Hispanic foods: chemistry and flavor. ACS Symposium Series, Washington DC, pp 103–116CrossRefGoogle Scholar
  15. 15.
    Martínez EN, Añón MC (1996) Composition and structural characterization of amaranth protein isolates. An electrophoretic and calorimetric study. J Agric Food Chem 44:2523–2530.  https://doi.org/10.1021/jf960169p CrossRefGoogle Scholar
  16. 16.
    Hernandez-Ledesma B, Amigo L, Ramos M, Recio I (2004) Angiotensin converting enzyme inhibitory activity in commercial fermented products. Formation of peptides under simulated gastrointestinal digestion. J Agric Food Chem 52:1504–1510.  https://doi.org/10.1021/jf034997b CrossRefPubMedGoogle Scholar
  17. 17.
    Roesler KR, Rao AG (2001) Rapid gastric fluid digestion and biochemical characterization of engineered proteins enriched in essential amino acids. J Agric Food Chem 49:3443–3451.  https://doi.org/10.1021/jf010209b CrossRefPubMedGoogle Scholar
  18. 18.
    Markwell MAK, Haas SM, Bieber LL, Tolbert NE (1978) A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87:206–210.  https://doi.org/10.1016/0003-2697(78)90586-9 CrossRefPubMedGoogle Scholar
  19. 19.
    Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83:346–356.  https://doi.org/10.1016/0003-2697(77)90043-4 CrossRefPubMedGoogle Scholar
  20. 20.
    Nkonge C, Ballance GM (1982) A sensitive colorimetric procedure for nitrogen determination in micro-Kjeldahl digests. J Agric Food Chem 30:416–420.  https://doi.org/10.1021/jf00111a002 CrossRefGoogle Scholar
  21. 21.
    Yemm EW, Willis AJ (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochem J 57:508–514.  https://doi.org/10.1042/bj0570508 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    AOAC (1990) AOAC Official Methods of Analysis. Assoc Off Agric Chem Gaithersburg, USA 16th:Google Scholar
  23. 23.
    Nielsen PM, Petersen D, Dambmann C (2001) Improved method for determining food protein degree of hydrolysis. J Food Sci 66:642–646.  https://doi.org/10.1111/j.1365-2621.2001.tb04614.x CrossRefGoogle Scholar
  24. 24.
    Sabbione AC, Scilingo A, Añón MC (2015) Potential antithrombotic activity detected in amaranth proteins and its hydrolysates. LWT-Food Sci Technol 60:171–177.  https://doi.org/10.1016/j.lwt.2014.07.015 CrossRefGoogle Scholar
  25. 25.
    Schägger H (2006) Tricine-SDS-PAGE. Nat Protoc 1:16–22.  https://doi.org/10.1038/nprot.2006.4 CrossRefPubMedGoogle Scholar
  26. 26.
    Köhler C, Orrenius S, Zhivotovsky B (2002) Evaluation of caspase activity in apoptotic cells. J Immunol Methods 265:97–110.  https://doi.org/10.1016/S0022-1759(02)00073-X CrossRefPubMedGoogle Scholar
  27. 27.
    Segura-Nieto M, Barba de la Rosa A, Paredes-López O (1994) Biochemistry of amaranth proteins. In: Paredes-López O (ed) Amaranth: biology, chemistry and technology. CRC Press, Boca Ratón, pp 129–185Google Scholar
  28. 28.
    Quiroga A, Martínez EN, Rogniaux H et al (2010) Amaranth (Amaranthus hypochondriacus ) vicilin subunit structure. J Agric Food Chem 58:12957–12963.  https://doi.org/10.1021/jf103296n CrossRefPubMedGoogle Scholar
  29. 29.
    Vilcacundo R, Miralles B, Carrillo W, Hernández-Ledesma B (2018) In vitro chemopreventive properties of peptides released from quinoa (Chenopodium quinoa Willd.) protein under simulated gastrointestinal digestion. Food Res Int 105:403–411.  https://doi.org/10.1016/j.foodres.2017.11.036 CrossRefPubMedGoogle Scholar
  30. 30.
    Vilcacundo R, Martínez-Villaluenga C, Miralles B, Hernández-Ledesma B (2018) Release of multifunctional peptides from kiwicha (Amaranthus caudatus) protein under in vitro gastrointestinal digestion. J Sci Food Agric.  https://doi.org/10.1002/jsfa.9294
  31. 31.
    Bajbouj K, Schulze-Luehrmann J, Diermeier S, Amin A, Schneider-Stock R (2012) The anticancer effect of saffron in two p53 isogenic colorectal cancer cell lines. BMC Complement Altern Med 12:69–77.  https://doi.org/10.1186/1472-6882-12-69 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Porter AG, Jänicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6:99–104.  https://doi.org/10.1038/sj.cdd.4400476 CrossRefPubMedGoogle Scholar
  33. 33.
    Dia VP, Gonzalez de Mejia E (2010) Lunasin promotes apoptosis in human colon cancer cells by mitochondrial pathway activation and induction of nuclear clusterin expression. Cancer Lett 295:44–53.  https://doi.org/10.1016/j.canlet.2010.02.010 CrossRefPubMedGoogle Scholar
  34. 34.
    Maldonado-Cervantes E, Jeong HJ, León-Galván F, Barrera-Pacheco A, de León-Rodríguez A, González de Mejia E, de Lumen BO, Barba de la Rosa AP (2010) Amaranth lunasin-like peptide internalizes into the cell nucleus and inhibits chemical carcinogen-induced transformation of NIH-3T3 cells. Peptides 31:1635–1642.  https://doi.org/10.1016/j.peptides.2010.06.014 CrossRefPubMedGoogle Scholar
  35. 35.
    Silva-Sánchez C, de la Rosa APB, León-Galván MF, de Lumen BO, de León-Rodríguez A, de Mejía EG (2008) Bioactive peptides in Amaranth (Amaranthus hypochondriacus) seed. J Agric Food Chem 56:1233–1240.  https://doi.org/10.1021/jf072911z CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ana Clara Sabbione
    • 1
  • Fredrick Onyango Ogutu
    • 2
  • Adriana Scilingo
    • 1
  • Miao Zhang
    • 2
  • María Cristina Añón
    • 1
    Email author
  • Tai-Hua Mu
    • 2
    Email author
  1. 1.Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Facultad de Ciencias Exactas-UNLP, CONICET, CICLa PlataArgentina
  2. 2.Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Key Laboratory of Agro-Products Processing, Ministry of AgricultureChinese Academy of Agricultural SciencesBeijingChina

Personalised recommendations