Advertisement

Plant Foods for Human Nutrition

, Volume 73, Issue 3, pp 180–188 | Cite as

Nutraceutical Properties of Herbal Infusions from Six Native Plants of Argentine Patagonia

  • Bruno Gastaldi
  • G. Marino
  • Y. Assef
  • F. M. Silva Sofrás
  • C. A. N. Catalán
  • S. B. González
Original Paper
  • 25 Downloads

Abstract

Six native plants of South America traditionally consumed in the Patagonian region (southern Argentina and Chile), namely: Adesmia boronioides Hook. f., Apium australe Thouars, Buddleja globosa Hope, Drimys andina (Reiche) R. Rodr. & Quezada, Dysphania multifida L. and Solidago chilensis Meyen were investigated to determine the nutraceutical properties of infusions of their aerial parts. The infusions were characterized in terms of their antioxidant activity, phenolic and flavonoid content, profile of phenolic compounds, general toxicity and cytotoxicity on two different human cell lines: T84 (derived from colon cancer) and HTR8/SVneo (not derived from cancer). Twenty-nine compounds, mainly phenolic acids and flavonoids, were identified. This is the first analysis of phenolic compounds in infusions from native plants of Patagonia. D. andina, B. globosa and S. chilensis showed high levels of antioxidants, even higher than those of Green Tea. The content of phenolic compounds correlated significantly with the antioxidant activity of the samples analyzed. The toxicity test indicated that the use of A. australe, B. globosa and D. multifida seems safe, but a moderate consumption is suggested for A. boronioides, D. andina and S. chilensis until more exhaustive and long-term results are available. Moreover, A. boronioides and S. chilensis showed anticancer potential due to their antiproliferative activity on human cancer cell lines.

Keywords

Antioxidant activity Antiproliferative activity Infusions Native plants Argentine Patagonia Phenolic compounds 

Abbreviations

ATCC

American Type Culture Collection

BCB

β-carotene-linoleic acid method

DPPH

2,2′-diphenyl-1-picrylhydrazyl

EC50

Efficient concentration 50

GAE

Gallic acid equivalent

HTR8/SVneo

Cancer cell line from placental tissue

LC50

Lethal concentration 50

LC-DAD-MS

Liquid chromatography with diode array detection with tandem mass spectrometry

MTT

Methylthiazolyldiphenyl-tetrazolium bromide

QE

Quercetin equivalent

T84

Cancer cell line from colon

TPC

Total phenolic compound content

TF

Total flavonoid content

VCEAC

Vitamin C equivalent antioxidant capacity

Notes

Acknowledgments

We would like to thank Direction of Flora and Fauna Silvestre, Chubut, Argentina, for allowing the sustainable collection of plant material in wild populations. We thank Dr. Nora B. Muruaga and staff of Miguel Lillo Institute for the identification of the botanical material and its deposit in the herbarium. We also thank the anonymous reviewers for their constructive suggestions, which have greatly improved the manuscript. This work has been supported in part by CONICET, Argentina.

Compliance with Ethical Standards

Not applicable.

Human or Animal Studies

This article does not contain any studies with human or animal subjects.

Conflict of Interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Supplementary material

11130_2018_680_MOESM1_ESM.jpg (80 kb)
Online Resource 1 Map showing the Río Negro and Chubut provinces in Argentine Patagonia. The numbers indicate wild populations of A. boronioides (1), A. australe (2), B. globosa (3), D. andina (4), D. multifida (5) and S. chilensis (6). (JPG 79 kb)
11130_2018_680_MOESM2_ESM.doc (66 kb)
Online Resource 2 (DOC 66 kb)

References

  1. 1.
    Kalra EK (2003) Nutraceutical-definition and introduction. AAPS PharmSciTech 5(3):1–2CrossRefGoogle Scholar
  2. 2.
    Gentile C, Reig C, Corona O, Farina V et al (2016) Pomological traits, sensory profile and nutraceutical properties of nine cultivars of loquat (Eriobotrya japonica Lindl.) fruits grown in mediterranean area. Plant Foods Hum Nutr 71(3):330–338CrossRefGoogle Scholar
  3. 3.
    Barboza G, Cantero J, Ñúnez C, Pacciaroni A, Espinar LA (2009) Medicinal plants: a general review and a phytochemical and ethnopharmacological screening of the native Argentine Flora. Kurtziana 34:7–365Google Scholar
  4. 4.
    González SB, Bandoni A, van Baren C, Di Leo Lira P, García C, Joseph-Nathan P (2004) The essential oil of the aerial parts of Adesmia boronioides Hook f. J Essent Oil Res 16:513–516CrossRefGoogle Scholar
  5. 5.
    Schmeda-Hirchsman G, Razmilic L, Gutierrez MI, Loyola JI (1999) Proximal composition and biological activity of food plants gathered by chilean amerindias. Econ Bot 53:177–187CrossRefGoogle Scholar
  6. 6.
    Backhouse N, Rosales L, Apablaza L, Goïty L, Erazo S, Negrete R, Theodoluz C, Rodríguez J, Delporte C (2008) Analgesic, anti-inflammatory and antioxidant properties of Buddleja globosa, Buddlejaceae. J Ethnopharmacol 2(5):263–269CrossRefGoogle Scholar
  7. 7.
    Jara-Arancio P, Carmona MR, Correa C, Squeo FA, Arancio G (2012) Leaf morphological and genetic divergence in populations of Drimys (Winteraceae) in Chile. Genet Mol Res 11(1):229–243CrossRefGoogle Scholar
  8. 8.
    Gadano A, Gurni A, Carballo A (2007) Herbal medicines: cytotoxic effects of chenopodiaceae species used in Argentinian folk medicine. Pharm Biol 45(3):217–222CrossRefGoogle Scholar
  9. 9.
    Gastaldi B, Catalan CAN, Silva-Sofrás FM, González SB (2018) Solidago chilensis Meyen (Asteraceae), a medicinal plant from South America. A comprehensive review: ethnomedicinal uses, phytochemistry and bioactivity. B Latinoam Caribe Pl 17(1):17–29Google Scholar
  10. 10.
    Deetae P, Parichanon P, Trakunleewatthana P, Chanseetis C, Lertsiri S (2012) Antioxidant and anti-glycation properties of Thai herbal teas in comparison with conventional teas. Food Chem 133:953–959CrossRefGoogle Scholar
  11. 11.
    Toit R, Volsteedt Y, Apostolides Z (2001) Comparison of the antioxidant content of fruits, vegetables and teas measured as vitamin C equivalents. Toxicology 166:63–69CrossRefGoogle Scholar
  12. 12.
    Da Silva-Port’s P, Chisté RC, Godo HT, Prado MA (2013) The phenolic compounds and the antioxidant potential of infusion of herbs from the Brazilian Amazonian region. Food Res Int 53(2):875–881CrossRefGoogle Scholar
  13. 13.
    Martins MR, Arantes S, Candeias F, Tinoco MT, Morais JC (2014) Antioxidant, antimicrobial and toxicological properties of Schinus molle L. essential oils. J Ethnopharmacol 151(1):485–492CrossRefGoogle Scholar
  14. 14.
    Ismail A, Marjan ZM, Foong CW (2004) Total antioxidant activity and phenolic content in selected vegetables. Food Chem 87:581–586CrossRefGoogle Scholar
  15. 15.
    Kogiannou D, Kalogeropoulus N, Kefalas P, Polissiou MG, Kaliora A (2013) Herbal infusions; their phenolic profile, antioxidant and anti-inflammatory effects in HT29 and PC3 cell. Food Chem Toxicol 61:152–159CrossRefGoogle Scholar
  16. 16.
    Dudonné S, Vitrac X, Coutiére P, Woillez M, Mérillon JM (2009) Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J Agric Food Chem 57(5):1768–1774CrossRefGoogle Scholar
  17. 17.
    Li S, Li SK, Gan RY, Song FL, Kuang L, Li HB (2013) Antioxidant capacities and total phenolic contents of infusions from 223 medicinal plants. Ind Crop Prod 51:289–298CrossRefGoogle Scholar
  18. 18.
    Marino GI, Assef YA, Kotsias BA (2013) The migratory capacity of human trophoblastic BeWo cells: effects of aldosterone and the epithelial sodium channel. J Membr Biol 246:243–255CrossRefGoogle Scholar
  19. 19.
    Schmeda-Hirchsman G, Quispe C, González B (2015) Phenolic profiling of the South American “Baylahuen” tea (Haplopappus spp., Asteraceae) by HPLC-DAD-ESI-MS. Molecules 20:913–928CrossRefGoogle Scholar
  20. 20.
    Wagner H, Baldt S (2001) Plant drug analysis. A thin layer chromatography atlas. Springer, München, p 384Google Scholar
  21. 21.
    Bussman RW, Malca G, Glenn A, Sharon D, Nilsen B, Parris B, Dubose D, Ruid D, Saleda J, Martinez M, Carillo L, Walker K, Kuhlman A, Townesmith A (2011) Toxicity of medicinal plants used in traditional medicine in Northern Peru. J Ethnopharmacol 137:121–140CrossRefGoogle Scholar
  22. 22.
    Pisoschi AM, Pop A, Cimpeanu C, Predoi G (2016) Antioxidant capacity determination in plants and plant-derived products: a review. Oxidative Med Cell Longev 2016:1–36.  https://doi.org/10.1155/2016/9130976 CrossRefGoogle Scholar
  23. 23.
    Floegel A, Kim DO, Chung SJ, Koo SI, Chun OK (2011) Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J Food Compos Anal 24:1043–1048CrossRefGoogle Scholar
  24. 24.
    Moraes-de-Souza RA, Oldoni TLC, Regitano-d’Arce MAB, Alencar SM (2008) Antioxidant activity and phenolic composition of herbal infusions consumed in Brazil. Cienc Tecnol Aliment 6(1):41–47CrossRefGoogle Scholar
  25. 25.
    Malgalhäes LM, Segundo MA, Reis S, Lima JLFC (2006) Automatic method for determination of total antioxidant capacity using 2,2-diphenyl-1-picrylhydrazyl assay. Anal Chim Acta 558:310–318CrossRefGoogle Scholar
  26. 26.
    Neveu V, Perez-Jiménez J, Vos F, Crespy V, du Chaffaut L, Mennen L, Knox C, Eisner R, Cruz J, Wishart D, Scalbert A (2010) Phenol-explorer: an online comprehensive database on polyphenol contents in foods. Database.  https://doi.org/10.1093/database/bap024 Accessed 06 February 2018
  27. 27.
    Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med Cell Longev 2(5):270–278CrossRefGoogle Scholar
  28. 28.
    Nunes BS, Carvalho FD, Guilhermino LM, Van Stappen G (2006) Use of the genus Artemia in ecotoxicity testing. Environ Pollut 144:453–462CrossRefGoogle Scholar
  29. 29.
    Parra AL, Yhebra S, Sardiñas G, Buela LI (2001) Comparative study of the assay of Artemia salina L. and the estimate of the medium lethal dose (LD50 value) in mice, to determine oral acute toxicity of plant extracts. Phytomed 8(5):395–400CrossRefGoogle Scholar
  30. 30.
    Solis PN, Wright CW, Anderson MM, Gupta MP, Phillipson JD (1993) A microwell cytotoxicity assay using Artemia salina (Brine shrimp). Planta Med 59:250–252CrossRefGoogle Scholar
  31. 31.
    Tao J, Li Y, Li S, Li HB (2018) Plant foods for the prevention and management of colon cancer. J Funct Foods 42:95–110CrossRefGoogle Scholar
  32. 32.
    Pan MH, Ho CT (2008) Chemopreventive effects of natural dietary compounds on cancer development. Chem Soc Rev 37:2558–2574CrossRefGoogle Scholar
  33. 33.
    Araújo J, Goncalvez P, Martel F (2011) Chemopreventive effect of dietary polyphenols in colorectal cancer cell lines. Nutr Res 31:77–87CrossRefGoogle Scholar
  34. 34.
    Yanez J, Vicente V, Alcatraz M, Castillo J, Benavente-García O, Canteras M, Teruel L (2004) Cytotoxicity and antiproliferative activities of several phenolic compounds against three melanocytes cell lines: relationship between structure and activity. Nutr Cancer 49(2):191–199CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Química, Facultad de Ciencias Naturales y Ciencias de SaludUniversidad Nacional de la Patagonia San Juan Bosco (UNPSJB)EsquelArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  3. 3.Instituto de Investigaciones Médicas Alfredo LanariBuenos AiresArgentina
  4. 4.Centro de Investigación Esquel de Montaña y Estepa Patagónica (CIEMEP)EsquelArgentina
  5. 5.Instituto de Química del Noroeste Argentino (INQUINOA-CONICET), Instituto de Química Orgánica, Facultad de Bioquímica, Química y FarmaciaUniversidad Nacional de TucumánTucumánArgentina

Personalised recommendations