Advertisement

Plant Foods for Human Nutrition

, Volume 73, Issue 3, pp 228–234 | Cite as

Effect of Extrusion Conditions and the Optimization of Phenolic Compound Content and Antioxidant Activity of Wheat Bran Using Response Surface Methodology

  • José Rogelio Ramos-Enríquez
  • Benjamín Ramírez-Wong
  • Rosario Maribel Robles-Sánchez
  • Ramón Enrique Robles-Zepeda
  • Gustavo Adolfo González-Aguilar
  • Roberto Gutiérrez-Dorado
Original Paper
  • 210 Downloads

Abstract

The extrusion process (EP) consists of heat and mechanical treatments under different conditions of moisture, shear, and pressure and rapidly causes structural alterations and changes in the functional properties of the extruded material. The aim of this study was to evaluate the effect of extrusion conditions and optimize the wheat bran extrusion conditions to achieve the greatest content of phenolic compounds and antioxidant activity using response surface methodology. The EP factors evaluated were feed moisture (FM) (25–33.54%) and final extrusion temperature (T) (140–180 °C). The properties evaluated in the extruded material were bound total phenol content (BTPC), total phenolic compounds and antioxidant activity (AOX). Analysis of variance (ANOVA) and response surface methodology were used in the evaluation. The determination coefficients, (FM)2 and (T)2, very significantly affected the BTPC and bound 2,2-diphenyl-1-picrylhydrazyl content (BDPPHC). The optimization was performed by overlaying two contour plots to predict the best combination regions. The optimized extrusion conditions were the following: FM = 30% and T = 140 °C, which provided BTPC = 3547.01 μgGAE/g (predicted: 3589.3 μgGAE/g) and BDPPHC = 9.5 μmolTE/g (predicted: 10.4 μmolTE/g); and FM = 30% and T = 180 °C, which provided BTPC = 3342.3 μgGAE/g (predicted: 3727.7 μgGAE/g) and BDPPHC = 9.5 μmolTE/g (predicted: 9.3 μmolTE/g). The EP increased the phenolic compounds and AOX, and enhancement of these properties in wheat bran products could make them functional foods.

Keywords

Wheat Bran Optimization Antioxidant activity 

Notes

Acknowledgements

The authors want to thank Department of Research and Graduate in Food Science of the University of Sonora. The authors also thank to M.C. Ignacio Morales-Rosas for his help in running the extrusion experiments.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that there are no conflicts of interest.

Supplementary material

11130_2018_679_MOESM1_ESM.docx (21 kb)
ESM 1 (DOCX 21 kb)

References

  1. 1.
    Mateo-Anson N, Hemery YM, Bast A, Haenen GR (2012) Optimizing the bioactive potential of wheat bran by processing. Food Funct 3:362–375.  https://doi.org/10.1039/C2FO10241B CrossRefPubMedGoogle Scholar
  2. 2.
    Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med Cell Longev 2(5):270–278.  https://doi.org/10.4161/oxim.2.5.9498 CrossRefGoogle Scholar
  3. 3.
    Perales-Sánchez JXK, Reyes-Moreno C, Gómez-Favela MA, Milán-Carrillo J, Cuevas-Rodríguez EO, Valdez-Ortiz A, Gutiérrez-Dorado R (2014) Increasing the antioxidant activity, total phenolic, and flavonoid contents by optimizing the germination conditions of amaranth seeds. Plant Foods Hum Nutr 69:196–202.  https://doi.org/10.1007/s11130-014-0430-0 CrossRefPubMedGoogle Scholar
  4. 4.
    Alam MS, Kaur J, Khaira H, Gupta K (2016) Extrusion and extruded products: changes in quality attributes as affected by extrusion process parameters: a review. Crit Rev Food Sci Nutr 56(3):445–475.  https://doi.org/10.1080/10408398.2013.779568 CrossRefPubMedGoogle Scholar
  5. 5.
    Jacques-Fajardo GE, Prado-Ramírez R, Arriola-Guevara E, Pérez-Carrillo E, Espinosa-Andrews H, Guatemala-Morales GM (2017) Physical and hydration properties of expanded extrudates from a blue corn, yellow pea and oat bran blend. LWT-Food Sci Technol 84:804–814CrossRefGoogle Scholar
  6. 6.
    Mateo-Anson N, Van den Berg R, Havenaar R, Bast A, Haenen GRMM (2009) Bioavailability of ferulic acid is determined by its bioaccessibility. J Cereal Sci 49:296–300.  https://doi.org/10.1016/j.jcs.2008.12.001 CrossRefGoogle Scholar
  7. 7.
    Adom KK, Sorrells ME, Liu RH (2003) Phytochemical profiles and antioxidant activity of wheat varieties. J Agric Food Chem 51:7825–7834.  https://doi.org/10.1021/jf030404l CrossRefPubMedGoogle Scholar
  8. 8.
    Brennan MA, Merts I, Monro J, Woolnough J, Brennan CS (2008) Impact of guar gum and wheat bran on the physical and nutritional quality of extruded breakfast cereals. Starch 60:248–256.  https://doi.org/10.1002/star.200700698 CrossRefGoogle Scholar
  9. 9.
    Zielinski H, Kozlowska H, Lewczuk B (2001) Bioactive compounds in the cereal grains before and after hydrothermal processing. Innov Food Sci Emerg Technol 2(3):159–169.  https://doi.org/10.1016/S1466-8564(01)00040-6 CrossRefGoogle Scholar
  10. 10.
    Salazar-Lopez NJ, Loarca-Piña G, Campos-Vega R, Gaytán-Martínez M, Morales-Sánchez E, Esquerra-Brauer JM, Gonzalez-Aguilar GA, Robles-Sánchez M (2016) The extrusion process as an alternative for improving the biological potential of sorghum bran: phenolic compounds and antiradical and anti-inflammatory capacity. Evid Based Complement Alternat Med 2016:1–8.  https://doi.org/10.1155/2016/8387975 CrossRefGoogle Scholar
  11. 11.
    El-Hady EAA, Habiba RA (2003) Effect of soaking and extrusion condition on anti-nutrients and protein digestibility of legume seed. Food Sci Technol 36(3):285–293.  https://doi.org/10.1016/S0023-6438(02)00217-7 CrossRefGoogle Scholar
  12. 12.
    Annica AM, Andersson R, Andersson AJ, Andersson J, Fredriksson H (2017) Effect of different extrusion parameters on dietary fiber in wheat bran and rye bran. J Food Sci 82(6):1344–1350.  https://doi.org/10.1111/1750-3841.13741 CrossRefGoogle Scholar
  13. 13.
    Esposito F, Arlotti G, Bonifati AM, Napolitano A, Vitale D, Fogliano V (2005) Antioxidant activity and dietary fibre in durum wheat bran by-products. Food Res Int 38:1167–1173.  https://doi.org/10.1016/j.foodres.2005.05.002 CrossRefGoogle Scholar
  14. 14.
    White BL, Howard LR, Prior RL (2010) Polyphenolic composition and antioxidant capacity of extruded cranberry pomace. J Agric Food Chem 58(7):4037–4042.  https://doi.org/10.1021/jf902838b CrossRefPubMedGoogle Scholar
  15. 15.
    Ti H, Zhang R, Zhang M (2015) Effect of extrusion on phytochemical profiles in milled fractions of black rice. Food Chem 178:186–194.  https://doi.org/10.1016/j.foodchem.2015.01.087 CrossRefPubMedGoogle Scholar
  16. 16.
    Sharma P, Gujral HS, Gujral HS, Singh B (2012) Antioxidant activity of barley as affected by extrusion cooking. Food Chem 131:1406–1413.  https://doi.org/10.1016/j.foodchem.2011.10.009 CrossRefGoogle Scholar
  17. 17.
    Carrasco-Valencia RR, Acevedo de La Cruz A, Icochea-Álvarez JC, Kallio H (2009) Chemical and functional characterization of kañiwa (Chenopodium pallidicaule) grain, extrudate and bran. Plant Foods Hum Nutr 64:94–101.  https://doi.org/10.1007/s11130-009-0109-0 CrossRefGoogle Scholar
  18. 18.
    Altan A, McCarthy KL, Maskan M (2008) Extrusion cooking of barley flour and process parameter optimization by using response surface methodology. J Sci Food Agric 88:1648–1659.  https://doi.org/10.1002/jsfa.3262 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • José Rogelio Ramos-Enríquez
    • 1
  • Benjamín Ramírez-Wong
    • 2
  • Rosario Maribel Robles-Sánchez
    • 2
  • Ramón Enrique Robles-Zepeda
    • 1
  • Gustavo Adolfo González-Aguilar
    • 3
  • Roberto Gutiérrez-Dorado
    • 4
  1. 1.Departamento de Ciencias Químico BiológicasUniversidad de SonoraHermosilloMexico
  2. 2.Departamento de Investigación y Posgrado en Alimentos (DIPA)Universidad de SonoraHermosilloMexico
  3. 3.Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C.HermosilloMexico
  4. 4.Programa Regional del Noroeste para el Doctorado en BiotecnologíaUniversidad Autónoma de SinaloaCuliacánMexico

Personalised recommendations