Plant Foods for Human Nutrition

, Volume 73, Issue 3, pp 247–252 | Cite as

Colorimetric Analysis of Hibiscus Beverages and their Potential Antioxidant Properties

  • G. A. Camelo-Méndez
  • P. E. Vanegas-Espinoza
  • M. L. Escudero-Gilete
  • F. J. Heredia
  • O. Paredes-López
  • A. A. Del Villar-MartínezEmail author
Original Paper


In food industry, roselle beverages and their subproducts could be functional ingredients since they are an excellent source of bioactive compounds with improved performance due to their important anthocyanins content. The aim of this study was to analyze anthocyanin content and antioxidant properties of aqueous infusions elaborated with color contrasting Hibiscus materials and design a mathematical model in order to predict color-composition relationship. Color measurements of beverages from roselle (Negra, Sudan and Rosa) were made by transmission spectrophotometry, anthocyanins quantification was determined by HPLC, and antioxidant potential was evaluated by in vitro methods (ABTS and FRAP assays). Beverages prepared with particle size minor of 250 μm presented until 4- and 2- times more anthocyanins content and antioxidant capacity respectively, in comparison to beverages prepared with powders with particle size major of 750 μm. Positive correlations among pigments composition and color parameters were found (p < 0.05), showing that anthocyanins content, antioxidant capacity, C*ab and hab values increased in relation with the smallest particle size of flours. Also, mathematical models were stablished to predict anthocyanin content (r ≥ 0.97) and antioxidant capacity (r ≥ 0.89) from color data; we propose equations for quick estimation of the antioxidant capacity in the Hibiscus beverages with high anthocyanin content. The obtained models could be an important tool to be used in food industry for pigment characterization or functional compounds with potential health benefits.


Hibiscus beverages Anthocyanins Antioxidant capacity Tristimulus colorimetry 



The authors thank to Colegio Superior de Agricultura del Estado de Guerrero (CSAEGRO) and Quintín Obispo González for biological samples. Also, thank the support from CONACYT, Mexico, SIP-IPN, COFAA-IPN, and EDI-IPN. One of the authors (GACM) also acknowledges the scholarship from CONACYT, Mexico.

Compliance with Ethical Standards

Conflict of Interest

We certify that there is no actual or potential conflict of interest in relation of this article.

Supplementary material

11130_2018_672_MOESM1_ESM.docx (16 kb)
Online Resource 1 (DOCX 16 kb)


  1. 1.
    Gomes Maganha E, da Costa Halmenschlager R, Moreira Rosa R, Pegas Henriques JA, Lia de Paula Ramos AL, Saffi J (2010) Pharmacological evidences for the extracts and secondary metabolites from plants of the genus Hibiscus. Food Chem 118:1–10. CrossRefGoogle Scholar
  2. 2.
    Camelo-Méndez GA, Jara-Palacios MJ, Escudero-Gilete ML, Gordillo B, Hernanz D, Paredes-López O, Vanegas-Espinoza PE, Del Villar-Martínez AA, Heredia FJ (2016) Comparative study of phenolic profile, antioxidant capacity, and color-composition relation of Roselle cultivars with contrasting pigmentation. Plant Foods Hum Nutr 71:109–114. CrossRefPubMedGoogle Scholar
  3. 3.
    Sreelatha S, Padma PR (2009) Antioxidant activity and total phenolic content of Moringa oleifera leaves in two stages of maturity. Plant Foods Hum Nutr 64:303–311. CrossRefPubMedGoogle Scholar
  4. 4.
    Ramírez-Rodrigues MM, Plaza ML, Azeredo A, Balaban MO, Marshall MR (2012) Phytochemical, sensory attributes and aroma stability of dense phase carbon dioxide processed Hibiscus sabdariffa beverage during storage. Food Chem 134:1425–1431. CrossRefPubMedGoogle Scholar
  5. 5.
    Camelo-Méndez GA, Ragazzo-Sánchez JA, Jiménez-Aparicio AR, Vanegas-Espinoza PE, Paredes-López O, Del Villar-Martínez AA (2013) Comparative study of anthocyanin and volatile compounds content of four varieties of Mexican roselle (Hibiscus sabdariffa L.) by multivariable analysis. Plant Foods Hum Nutr 68:229–234. CrossRefPubMedGoogle Scholar
  6. 6.
    Maga JA, Kim CH (1990) Stability of natural colorants (annatto, beet, paprika, turmeric) during extrusion cooking. Lebensm Wiss Technol 23:427–432Google Scholar
  7. 7.
    Escudero-Gilete ML, González-Miret ML, Heredia FJ (2010) Implications of blending wines on the relationships between the colour and the anthocyanic composition. Food Res Int 43:745–752. CrossRefGoogle Scholar
  8. 8.
    Hernanz D, Recamales ÁF, Meléndez-Martínez AJ, González-Miret ML, Heredia FJ (2008) Multivariate statistical analysis of the color - anthocyanin relationships in different soilless-grown strawberry genotypes. J Agric Food Chem 56:2735–2741. CrossRefPubMedGoogle Scholar
  9. 9.
    Montes C, Vicario IM, Raymundo M, Fett R, Heredia FJ (2005) Application of tristimulus colorimetry to optimize the extraction of anthocyanins from jaboticaba (Myricia Jaboticaba berg.). Food Res Int 38:983–988. CrossRefGoogle Scholar
  10. 10.
    Jiménez AM, Sierra CA, Rodríguez-Pulido FJ, González-Miret ML, Heredia FJ, Osorio C (2011) Physicochemical characterisation of gulupa (Passiflora edulis Sims. Fo edulis) fruit from Colombia during the ripening. Food Res Int 44:1912–1918. CrossRefGoogle Scholar
  11. 11.
    Hurtado NH, Morales AL, González-Miret ML, Escudero-Gilete ML, Heredia FJ (2009) Colour, pH stability and antioxidant activity of anthocyanin rutinosides isolated from tamarillo fruit (Solanum betaceum Cav.). Food Chem 117:88–93. CrossRefGoogle Scholar
  12. 12.
    Sáyago-Ayerdi SG, Arranz S, Serrano J, Goñi I (2007) Dietary fiber content and associated antioxidant compounds in roselle flower (Hibiscus sabdariffa L.) beverage. J Agric Food Chem 55:7886–7890. CrossRefPubMedGoogle Scholar
  13. 13.
    Heredia FJ, Álvarez C, GonzÁlez-Miret ML, Ramírez A (2004) CromaLab, anÁlisis de color. Registro General de la Propiedad IntelectualGoogle Scholar
  14. 14.
    CIE (2004) Technical report colorimetry. Commission Internationale de l’Eclairage Central Bureau, Vienna, AustriaGoogle Scholar
  15. 15.
    Wyszecki G, Stiles WS (1982) Color science. Concepts and methods. Quantitative data and formulae, 2nd edn. John Wiley and Sons, New YorkGoogle Scholar
  16. 16.
    Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76. CrossRefPubMedGoogle Scholar
  17. 17.
    Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237. CrossRefPubMedGoogle Scholar
  18. 18.
    Fernández-Vázquez R, Stinco CM, Hernanz D, Heredia FJ, Vicario IM (2013) Colour training and colour differences thresholds in orange juice. Food Qual Prefer 30:320–327. CrossRefGoogle Scholar
  19. 19.
    Mohd-Esa N, Hern FS, Ismail A, Yee CL (2010) Antioxidant activity in different parts of roselle (Hibiscus sabdariffa L.) extracts and potential exploitation of the seeds. Food Chem 122:1055–1060. CrossRefGoogle Scholar
  20. 20.
    Meléndez-Martínez AJ, Vicario IM, Heredia FJ (2003) Application of tristimulus colorimetry to estimate the carotenoids content in ultrafrozen orange juices. J Agric Food Chem 51:7266–7270. CrossRefPubMedGoogle Scholar
  21. 21.
    Amiot MJ, Riva C, Vinet A (2016) Effects of dietary polyphenols on metabolic syndrome features in humans: a systematic review. Obes Rev 17:573–586CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • G. A. Camelo-Méndez
    • 1
  • P. E. Vanegas-Espinoza
    • 1
  • M. L. Escudero-Gilete
    • 2
  • F. J. Heredia
    • 2
  • O. Paredes-López
    • 3
  • A. A. Del Villar-Martínez
    • 1
    Email author
  1. 1.Instituto Politécnico Nacional, CEPROBIYautepecMexico
  2. 2.Food Colour & Quality Laboratory, Department Nutrition & Food ScienceUniversidad de Sevilla, Facultad de FarmaciaSevillaSpain
  3. 3.Centro de Investigación y de Estudios Avanzados-IPNGuanajuatoMexico

Personalised recommendations