Advertisement

New quantum codes from two linear codes

  • Xiusheng Liu
  • Peng HuEmail author
Article
  • 58 Downloads

Abstract

A CSS quantum code is succinctly represented as a pair of linear codes \((C_1 ,C_2^{\perp })\) over finite fields \({\mathbb {F}}_{p^e}\) with \(C_2^{\perp }\subset C_1\), where p is a prime and e is a positive integer. In this paper, we present two criteria of the \(C_2^{\perp _s}\subset C_1\) , where \(C_2^{\perp _s}\) denotes the s-Galois dual of \(C_2\) and \(0\le s <e\). Then, using the two criteria, we construct some new quantum codes and a class of new quantum maximum-distance-separable (quantum MDS) codes. In addition, our obtained quantum MDS codes have parameters better than the ones available in the literature.

Keywords

s-Galois dual code Quantum MDS code Rank of matrix 

Notes

Acknowledgements

This work was supported by Scientific Research Foundation of Hubei Provincial Education Department of China (Grant No. Q20174503) and the National Science Foundation of Hubei Polytechnic University of China (Grant Nos. 12xjz14A and 17xjz03A).

References

  1. 1.
    Aly, S.A., Klappenecker, A., Sarvepalli, P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53(3), 1183–1188 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Aly, S.A., Klappenecker, A., Sarvepalli, P.K.: Primitive quantum BCH codes over finite fields. In: Proceedings of International Symposium on Information Theory (ISIT), pp. 1114–1118 (2006)Google Scholar
  3. 3.
    Ashikhmin, A., Knill, E.: Nonbinary quantum stabilizer codes. IEEE Trans. Inf. Theory 47(7), 3065–3072 (2001)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over \(GF(4)\). IEEE Trans. Inf. Theory 44, 1369–1387 (1998)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction and orthogonal geometry. Phys. Rev. Lett. 78(3), 405–408 (1997)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Calderbank, A.R., Shor, P.W.: Good quantum error correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    Chen, B., Ling, S., Zhang, G.: Applications of constacyclic codes to quantum MDS codes. IEEE Trans. Inf. Theory 61(3), 1474–1484 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
  9. 9.
    Fan, Y., Zhang, L.: Galois self-dual constacyclic codes. Des. Codes Cryptogr. 84, 473–492 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hamada, M.: Concatenated quantum codes constructible in polynomial time: efficient decoding and error correction. IEEE Trans. Inf. Theory 54(12), 5689–5704 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hurley, T., Hurley, D., Hurley, B.: Entanglement-assisted quantum error-correcting codes from units. arXiv:1806.10875v1 (2018)
  12. 12.
    Jin, L., Xing, C.: A construction of new quantum MDS codes. IEEE Trans. Inf. Theory 60(5), 2921–2925 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kai, X., Zhu, S., Li, P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf. Theory 60(4), 2080–2085 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kai, X., Zhu, S., Li, P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf. Theory 60(4), 2080–2086 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    La Guardia, G.G., Palazzo Jr., R.: Constructions of new families of nonbinary CSS codes. Discret. Math. 310, 2935–2945 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Liu, X., Yu, L., Hu, Peng: New entanglement-assisted quantum codes from \(k\)-Galois dual codes. Finite Field Appl. 55, 21–32 (2019)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Liu, X., Liu, H., Yu, L.: Entanglement-assisted quantum codes from Galois LCD codes. Quantum Inf. Process 19(20), 1–15 (2020)Google Scholar
  18. 18.
    Ma, Z., Lu, X., Feng, K., Feng, D.: On non-binary quantum BCH codes. In: Lecture Notes in Computer Science, vol. 3959, pp. 675–683 (2006)Google Scholar
  19. 19.
    Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A. 52(4), 2493–2496 (1995)ADSCrossRefGoogle Scholar
  20. 20.
    Steane, A.M.: Simple quantum error correcting codes. Phys. Rev. A. 54, 4741–4751 (1996)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Steane, A.M.: Enlargement of Calderbank–Shor–Steane quantum codes. IEEE Trans. Inf. Theory 45(7), 2492–2495 (1999)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Shi, X., Yue, Q., Chang, Y.: Some quantum MDS codes with large minimum distance from generalized Reed-Solomon codes. Cryptogr. Commun. 10, 1165–1182 (2018)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Wang, L., Zhu, S.: New quantum MDS codes derived from constacyclic codes. Quantum Inf Process. 14, 881–889 (2015)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.School of Mathematics and PhysicsHubei Polytechnic UniversityHuangshiChina

Personalised recommendations