Advertisement

Quantum designated verifier signature based on Bell states

  • Xiangjun XinEmail author
  • Zhuo Wang
  • Qinglan Yang
  • Fagen Li
Article

Abstract

Recently, Shi et al. proposed two quantum designated verifier signature (QDVS) schemes. First, we demonstrate the forgery attack and repudiation attack to Shi et al.’s quantum QDVS schemes. Then, a new QDVS scheme based on Bell states is proposed. Our scheme overcomes the security drawbacks of Shi et al.’s scheme. It is secure against forgery attack, repudiation attack, inter-resending attack, impersonation attack and Trojan horse attack. What is more, our scheme has a strong security. It can be proved to be information-theoretically secure. Our scheme also has the properties such as designated verification, non-transferability and hiding source. On the other hand, in our scheme, the partners need not use any quantum one-way function or perform any quantum state comparison algorithm. The qubit efficiency of our scheme can achieve 66.7%. Therefore, our scheme is more secure and efficient than the similar schemes.

Keywords

Quantum signature Designated verifier Non-transferability Unforgeability Bell states 

Notes

References

  1. 1.
    Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their applications. In: Maurer, U. (ed.) Advances in Cryptology-Eurocrypt 1996, LNCS 1070, pp. 142–154. Springer, Berlin (1996)Google Scholar
  2. 2.
    Rastegari, P., Susilo, W., Dakhilalian, M.: Certificateless designated verifier signature revisited: achieving a concrete scheme in the standard model. Int. J. Inf. Secur. 18(5), 619–635 (2019)CrossRefGoogle Scholar
  3. 3.
    Kang, B., Boyd, C., Dawson, E.: A novel identity-based strong designated verifier signature scheme. J. Syst. Softw. 82(2), 270–273 (2009)CrossRefGoogle Scholar
  4. 4.
    Lee, J., Chang, J., Lee, D.: Forgery attacks on Kang et al.’s identity-based strong designated verifier signature scheme and its improvement with security proof. Comput. Electr. Eng. 36(5), 948–954 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Shi, W.M., Zhou, Y.H., Yang, Y.G.: A real quantum designated verifier signature scheme. Int. J. Theor. Phys. 54, 3115–3123 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Shi, W.M., Wang, Y.M., Zhou, Y.H., Yang, Y.G., Zhang, J.B.: A scheme on converting quantum signature with public verifiability into quantum designated verifier signature. Optik 164, 753–759 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv: quant-ph/0105032 (2001)Google Scholar
  9. 9.
    Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    Zhang, Y., Zeng, J.: An improved arbitrated quantum scheme with Bell states. Int. J. Theor. Phys. 57, 994–1003 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Jiang, D.H., Hu, Q.Z., Liang, X.Q., Xu, G.B.: A novel quantum multi-signature protocol based on locally indistinguishable orthogonal product states. Quantum Inf. Process. 18, 268 (2019)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Xin, X., He, Q., Wang, Z., Yang, Q., Li, F.: Security analysis and improvement of an arbitrated quantum signature scheme. Optik 189, 23–31 (2019)ADSCrossRefGoogle Scholar
  13. 13.
    Jiang, D.H., Xu, Y.L., Xu, G.B.: Arbitrary quantum signature based on local indistinguishability of orthogonal product states. Int. J. Theor. Phys. 58(3), 1036–1045 (2019)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Wang, M.Q., Wang, X., Zhan, T.: An efficient quantum signature for classical messages. Quantum Inf. Process. 17, 275 (2018)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Lou, X., Tang, W., Long, H., Cheng, Y.: A quantum blind signature scheme based on block encryption and quantum Fourier transfer. Int. J. Theor. Phys. 58(10), 3192–3202 (2019)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Xin, X., Wang, Z., Yang, Q.: Quantum signature scheme based on Hadamard and H π/4 operators. Appl. Opt. 58(27), 7346–7351 (2019)ADSCrossRefGoogle Scholar
  17. 17.
    Zhang, J.L., Zhang, J.Z., Xie, S.C.: Improvement of a quantum proxy blind signature scheme. Int. J. Theor. Phys. 57, 1612–1621 (2018)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key distribution scheme. Phys. Rev. A 65(03), 2302 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68(04), 2317 (2003)Google Scholar
  21. 21.
    Ekert, A.K.: Quantum cryptography based on Bell theorem. Phys. Rev. Lett. 67, 661–664 (1991)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Menezes, A.J., Oorschot, P.V., Vanstone, S.A.: Handbook of applied cryptography. CRC Press, Boca Raton (1996)zbMATHGoogle Scholar
  23. 23.
    Yang, L., Yang, B., Pan, J.: Quantum public-key encryption with information theoretic security. In: Proceedings of SPIE—The International Society for Optical Engineering, IEEE press, New York, vol. 8440, (2010)Google Scholar
  24. 24.
    Yang, L., Xiang, C., Li, B.: Quantum probabilistic encryption scheme based on conjugate coding. China Commun. 10(2), 19–26 (2013)CrossRefGoogle Scholar
  25. 25.
    Hwang, T., Lee, K.C.: EPR quantum key distribution protocols with 100% qubit efficiency. IET Inf. Secur. 1(1), 43–45 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.School of Mathematics and Information ScienceZhengzhou University of Light IndustryZhengzhouChina
  2. 2.LibraryZhengzhou University of Light IndustryZhengzhouChina
  3. 3.School of Computer Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations