Implementation of quantum secret sharing and quantum binary voting protocol in the IBM quantum computer
- 62 Downloads
Abstract
Quantum secret sharing is a way to share secret messages among the clients in a group with complete security. For the first time, Hillery et al. (Phys Rev A 59:1829, 1999) proposed the quantum version of classical secret sharing protocol using GHZ states. Here, we implement the above quantum secret sharing protocol in ‘IBM Q 5 Tenerife’ quantum processor and compare the experimentally obtained results with the theoretically predicted ones. Further, a new quantum binary voting protocol is proposed and implemented in the 14-qubit ‘IBM Q 14 Melbourne’ quantum processor. The results are analyzed through the technique of quantum state tomography, and the fidelity of states is calculated for different number of executions made in the device.
Keywords
Quantum secret sharing Quantum binary voting Quantum state tomography IBM Q 5 Tenerife IBM Q 14 MelbourneNotes
Acknowledgements
D.J. thanks U.G.C., New Delhi, for providing the financial support through BSR fellowship and Athul R.T. for the technical support. B.K.B. acknowledges the financial support of IISER Kolkata. The authors are extremely grateful to IBM team and IBM QE project. The discussions and opinions developed in this paper are only those of the authors and do not reflect the opinions of IBM or IBM Quantum Experience team.
References
- 1.Shamir, A.: How to share a secret. Commun. ACM 22, 612 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
- 2.Blakley, G.R.: Safeguarding cryptographic keys. In: International Workshop on Managing Requirements Knowledge, pp. 313–317. IEEE Computer Society, New York (1979)Google Scholar
- 3.Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61, 042311 (2000)ADSMathSciNetCrossRefGoogle Scholar
- 4.Singh, S.K., Srikanth, R.: Generalized quantum secret sharing. Phys. Rev. A 71, 012328 (2005)ADSMathSciNetCrossRefGoogle Scholar
- 5.Schneier, B.: Applied Cryptography, p. 70. Wiley, New York (1996)zbMATHGoogle Scholar
- 6.Gruska, J.: Foundations of Computing, p. 504. Thomson Computer Press, London (1997)Google Scholar
- 7.Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. Santa Fe, New Mexico (1994)Google Scholar
- 8.Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium Theory of Computing, pp. 212–219. ACM Press, New York (1996)Google Scholar
- 9.Gangopadhyay, S., Behera, B.K., Panigrahi, P.K.: Generalization and demonstration of an entanglement-based Deutsch–Jozsa-like algorithm using a 5-qubit quantum computer. Quantum Inf. Process. 17, 160 (2018)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 10.Wang, J., Li, L., Peng, H., Yang, Y.: Quantum-secret-sharing scheme based on local distinguishability of orthogonal multiqudit entangled states. Phys. Rev. A 95, 022320 (2017)ADSCrossRefGoogle Scholar
- 11.Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 12.Wiesner, S.: Conjugate coding. ACM SIGACT News 15, 78 (1983) CrossRefzbMATHGoogle Scholar
- 13.Wang, Z.Y., Yuan, H., Shi, S.H., Zhang, Z.J.: Three-party qutrit-state sharing. Eur. Phys. J. D 41, 371 (2007)ADSMathSciNetCrossRefGoogle Scholar
- 14.Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648 (1999)ADSCrossRefGoogle Scholar
- 15.Matsumoto, R.: Unitary reconstruction of secret for stabilizer-based quantum secret sharing. Quantum Inf. Process. 16, 202 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 16.Lu, H., et al.: Secret sharing of a quantum state. Phys. Rev. Lett. 117, 030501 (2016)ADSCrossRefGoogle Scholar
- 17.Sarvepalli, P.: Nonthreshold quantum secret-sharing schemes in the graph-state formalism. Phys. Rev. A 86, 042303 (2012)ADSCrossRefGoogle Scholar
- 18.Gravier, S., Javelle, J., Mhalla, M., Perdrix, S.: On weak odd domination and graph-based quantum secret sharing. Theor. Comput. Sci. 598, 129 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
- 19.Diep, D.N., Giang, D.H., Phu, P.H.: Application of quantum Gauss–Jordan elimination code to quantum secret sharing code. Int. J. Theor. Phys. 57, 841 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
- 20.Gao, G., Wang, Y., Wang, D., Ye, L.: Comment on ’Authenticated quantum secret sharing with quantum dialogue based on Bell states’. Phys. Scr. 93, 027002 (2018)ADSCrossRefGoogle Scholar
- 21.Abulkasim, H., Hamad, S., Elhadad, A.: Reply to Comment on ’Authenticated quantum secret sharing with quantum dialogue based on Bell states’. Phys. Scr. 93, 027001 (2018)ADSCrossRefGoogle Scholar
- 22.Liu, F., Qin, S.J., Wen, Q.Y.: A quantum secret-sharing protocol with fairness. Phys. Scr. 89, 075104 (2014)ADSCrossRefGoogle Scholar
- 23.Lai, H., Xiao, J., Orgun, M.A., Xue, L., Pieprzyk, J.: Quantum direct secret sharing with efficient eavesdropping-check and authentication based on distributed fountain codes. Quantum Inf. Process. 13, 895 (2014)ADSCrossRefzbMATHGoogle Scholar
- 24.Xie, C., Li, L., Qiu, D.: A novel semi-quantum secret sharing scheme of specific bits. Int. J. Theor. Phys. 54, 3819 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
- 25.Li, L., Qiu, D., Mateus, P.: Quantum secret sharing with classical Bobs. J. Phys. A Math. Theor. 46, 045304 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 26.Tsai, C., Hwang, T.: Multi-party quantum secret sharing based on two special entangled states. Sci. China Phys. Mech. Astron. 55, 460 (2012)ADSCrossRefGoogle Scholar
- 27.Helwig, W., Cui, W., Latorre, J.I., Riera, A., Lo, H.K.: Absolute maximal entanglement and quantum secret sharing. Phys. Rev. A 86, 052335 (2012)ADSCrossRefGoogle Scholar
- 28.Liao, C.H., Yang, C.W., Hwang, T.: Dynamic quantum secret sharing protocol based on GHZ state. Quantum Inf. Process. 13, 1907 (2014)ADSCrossRefzbMATHGoogle Scholar
- 29.Gao, G.: Improvement of efficient multiparty quantum secret sharing based on bell states and continuous variable operations. Int. J. Theor. Phys. 53, 2231 (2014)CrossRefGoogle Scholar
- 30.Zhang, L., Guo, Y., Huang, D.: High-efficient quantum secret sharing with arrangements of lines on two-dimensional planes. Int. J. Internet Protoc. Technol. 8, 116 (2014)CrossRefGoogle Scholar
- 31.Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005)ADSMathSciNetCrossRefGoogle Scholar
- 32.Massoud, H.D., Elham, F.: A novel and efficient multiparty quantum secret sharing scheme using entangled states. Sci. China Phys. Mech. Astron. 55, 1828 (2012)ADSCrossRefGoogle Scholar
- 33.Guo, G.P., Guo, G.C.: Quantum secret sharing without entanglement. Phys. Lett. A 310, 247 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 34.Hsu, L.Y., Li, C.M.: Quantum secret sharing using product states. Phys. Rev. A 71, 022321 (2005)ADSCrossRefGoogle Scholar
- 35.Yan, F., Gao, T.: Quantum secret sharing between multiparty and multiparty without entanglement. Phys. Rev. A 72, 012304 (2005)ADSCrossRefGoogle Scholar
- 36.Han, L.F., Liu, Y.M., Liu, J., Zhang, Z.J.: Multiparty quantum secret sharing of secure direct communication using single photons. Opt. Commun. 281, 2690 (2008)ADSCrossRefGoogle Scholar
- 37.Zhang, Z.J., Li, Y., Man, Z.X.: Multiparty quantum secret sharing. Phys. Rev. A 71, 044301 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 38.Chen, X.B., Niu, X.X., Zhou, X.J., Yang, Y.X.: Multi-party quantum secret sharing with the single-particle quantum state to encode the information. Quantum Inf. Process. 12, 365 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 39.Wang, H., Huang, Y., Fang, X., Gu, B., Fu, D.: High-capacity three-party quantum secret sharing with single photons in both the polarization and the spatial-mode degrees of freedom. Int. J. Theor. Phys. 52, 1043 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
- 40.Wang, T.Y., Wen, Q.Y., Chen, X.B., Guo, F.Z., Zhu, F.C.: An efficient and secure multiparty quantum secret sharing scheme based on single photons. Opt. Commun. 281, 6130 (2008)ADSCrossRefGoogle Scholar
- 41.Hao, S.B., Yu, B.: Multiparty quantum secret information sharing in enterprise management based on single qubit with random rotation angle. Int. J. Theor. Phys. 51, 1674 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
- 42.Muralidharan, S., Panigrahi, P.K.: Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77, 032321 (2008)ADSCrossRefGoogle Scholar
- 43.Muralidharan, S., Panigrahi, P.K.: Quantum-information splitting using multipartite cluster states. Phys. Rev. A 78, 062333 (2008)ADSCrossRefGoogle Scholar
- 44.Choudhury, S., Muralidharan, S., Panigrahi, P.K.: Quantum teleportation and state sharing using a genuinely entangled six-qubit state. J. Phys. A: Math. Theor. 42, 115303 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 45.Hou, K., Li, Y.B., Shi, S.H.: Quantum state sharing with a genuinely entangled five-qubit state and Bell-state measurements. Opt. Commun. 283, 1961 (2010)ADSCrossRefGoogle Scholar
- 46.Li, Y.H., Liu, J.C., Nie, Y.Y.: Quantum teleportation and quantum information splitting by using a genuinely entangled six-qubit state. Int. J. Theor. Phys. 49, 2592 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
- 47.Nie, Y.Y., Li, Y.H., Liu, J.C., Sang, M.H.: Quantum information splitting of an arbitrary three-qubit state by using two four-qubit cluster states. Quantum Inf. Process. 10, 297 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
- 48.Nie, Y.Y., Li, Y.H., Liu, J.C., Sang, M.H.: Quantum state sharing of an arbitrary three-qubit state by using four sets of W-class states. Opt. Commun. 284, 1457 (2011)ADSCrossRefGoogle Scholar
- 49.Muralidharan, S., Karumanchi, S., Narayanaswamy, S., Srikanth, R., Panigrahi, P.K.: In How Many Ways Can Quantum Information Be Split? arXiv:0907.3532
- 50.Tittel, W., Zbinden, H., Gisin, N.: Experimental demonstration of quantum secret sharing. Phys. Rev. A 63, 042301 (2011)ADSCrossRefGoogle Scholar
- 51.Schmid, C., Trojek, P., Bourennane, M., Kurtsiefer, C., Zukowski, M., Weinfurter, H.: Experimental single qubit quantum secret sharing. Phys. Rev. Lett. 95, 230505 (2005)ADSCrossRefGoogle Scholar
- 52.Gaertner, S., Kurtsiefer, C., Bourennane, M., Weinfurter, H.: Experimental demonstration of four-party quantum secret sharing. Phys. Rev. Lett. 98, 020503 (2007)ADSCrossRefGoogle Scholar
- 53.Wei, K.J., Ma, H.Q., Yang, J.H.: Experimental circular quantum secret sharing over telecom fiber network. Opt. Express 21, 16663 (2013)ADSCrossRefGoogle Scholar
- 54.IBM—Quantum Network. https://www.research.ibm.com/ibm-q/network/overview/. Accessed 18 July 2019
- 55.Boixo, S., et al.: Characterizing quantum supremacy in near-term devices. Nat. Phys. 14, 595–600 (2018)CrossRefGoogle Scholar
- 56.Connover, E.: Google moves toward quantum supremacy with 72-qubit computer. Sci. News 193, 6 (2018)Google Scholar
- 57.Gibney, E.: Inside Microsoft’s quest for a topological quantum computer. Nat. News (2016). https://doi.org/10.1038/nature.2016.20774 CrossRefGoogle Scholar
- 58.Microsoft Quantum Development Kit. https://microsoft.com/quantum (2017). Accessed 18 July 2019
- 59.The Future of Quantum Computing is Counted in Qubits. https://newsroom.intel.com/news/future-quantum-computing-counted-qubits/ (2018). Accessed 18 July 2019
- 60.Rigetti, C.: The Rigetti 128-qubit chip and what it means for quantum, Medium https://medium.com/rigetti/the-rigetti-128-qubit-chip-and-what-it-means-for-quantum-df757d1b71ea (2018). Accessed 18 July 2019
- 61.D-Wave Announces D-Wave 2000Q Quantum Computer and First System Order, press release. https://www.dwavesys.com/press-releases/d-wave%C2%A0announces%C2%A0d-wave-2000q-quantum-computer-and-first-system-order (2017). Accessed 18 July 2019
- 62.Neukart, F., Compostella, G., Seidel, C., Von Dollen, D., Yarkoni, S., Parney, B.: Traffic flow optimization using a quantum annealer. Front. ICT 4, 29 (2017). https://doi.org/10.3389/fict.2017.00029 CrossRefGoogle Scholar
- 63.Boyda, E., Basu, S., Ganguly, S., Michaelis, A., Mukhopadhyay, S., Nemani, R.R.: Deploying a quantum annealing processor to detect tree cover in aerial imagery of California. PLoS ONE 12(2), e0172505 (2017)CrossRefGoogle Scholar
- 64.O’Malley, D., Vesselinov, V.V., Alexandrov, B.S., Alexandrov, L.B.: Nonnegative/binary matrix factorization with a D-Wave quantum annealer. PLoS ONE 13(12), e0206653 (2018)CrossRefGoogle Scholar
- 65.Srivastava, R., Choi, I., Cook, T.: The Commercial Prospects of Quantum Computing. Technical report, Networked Quantum Information Technologies (2016)Google Scholar
- 66.Gabriel, P.: Quest for qubits. Science 354(6316), 1090–1093 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
- 67.Cusumano, M.A.: The business of quantum computing. Commun. ACM 61(10), 20–22 (2018)CrossRefGoogle Scholar
- 68.Fedortchenko, S.: A Quantum Teleportation Experiment for Undergraduate Students (2016). arXiv:1607.02398
- 69.Sisodia, M., Shukla, A., Thapliyal, K., Pathak, A.: Design and experimental realization of an optimal scheme for teleportation of an n-qubit quantum state. Quantum Inf. Process. 16, 292 (2017)ADSMathSciNetCrossRefGoogle Scholar
- 70.Alsina, D., Latorre, J.I.: Experimental test of Mermin inequalities on a five-qubit quantum computer. Phys. Rev. A 94, 012314 (2016)ADSCrossRefGoogle Scholar
- 71.Berta, M., Wehner, S., Wilde, M.M.: Entropic uncertainty and measurement reversibility. New J. Phys. 18, 073004 (2016)ADSCrossRefGoogle Scholar
- 72.Devitt, S.J.: Performing quantum computing experiments in the cloud. Phys. Rev. A 94, 032329 (2016)ADSCrossRefGoogle Scholar
- 73.Takita, M., Corcoles, A.D., Magesan, E., Abdo, B., Brink, M., Cross, A., Chow, J.M., Gambetta, J.M.: Demonstration of weight-four parity measurements in the surface code architecture. Phys. Rev. Lett. 117, 210505 (2016)ADSCrossRefGoogle Scholar
- 74.Wootton, J.R., Loss, D.: Repetition code of 15 qubits. Phys. Rev. A 97, 052313 (2018)ADSCrossRefGoogle Scholar
- 75.Ghosh, D., Agarwal, P., Pandey, P., Behera, B.K., Panigrahi, P.K.: Automated error correction in IBM quantum computer and explicit generalization. Quantum Inf. Process. 17, 153 (2018)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 76.Behera, B.K., Banerjee, A., Panigrahi, P.K.: Experimental realization of quantum cheque using a five-qubit quantum computer. Quantum Inf. Process. 16, 312 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 77.Sisodia, M., Shukla, A., Pathak, A.: Experimental realization of nondestructive discrimination of Bell states using a five-qubit quantum computer. Phys. Lett. A 381, 3860 (2017)ADSCrossRefGoogle Scholar
- 78.Vuillot, C.: Is Error Detection Helpful on IBM 5Q Chips? (2018). arXiv:1705.08957v1
- 79.Huang, H.L., Zhao, Y.W., Li, T., Li, F.G., Du, Y.T., Fu, X.Q., Zhang, S., Wang, X., Bao, W.S.: Homomorphic encryption experiments on IBM’s cloud quantum computing platform. Front. Phys. 12, 120305 (2017)CrossRefGoogle Scholar
- 80.Wooton, J.R.: Demonstrating non-Abelian braiding of surface code defects in a five qubit experiment. Quantum Sci. Technol. 2, 015006 (2017)ADSCrossRefGoogle Scholar
- 81.Li, R., Alvarez-Rodriguez, U., Lamata, L., Solano, E.: Approximate quantum adders with genetic algorithms: an IBM quantum experience. Quantum Meas. Quantum Metrol. 4, 1 (2017)ADSCrossRefGoogle Scholar
- 82.Deffner, S.: Demonstration of entanglement assisted invariance on IBM’s quantum experience. Heliyon 3, e00444 (2017)CrossRefGoogle Scholar
- 83.Hebenstreit, M., Alsina, D., Latorre, J.I., Kraus, B.: Compressed quantum computation using a remote five-qubit quantum computer. Phys. Rev. A 95, 052339 (2017)ADSCrossRefGoogle Scholar
- 84.Linke, N.M., Maslov, D., Roetteler, M., Debnath, S., Figgatt, C., Landsman, K.A., Wright, K., Monroe, C.: Experimental comparison of two quantum computing architectures. Proc. Natl. Acad. Sci. 114, 3305 (2017)CrossRefGoogle Scholar
- 85.Hillery, M., Ziman, M., Bužek, V., Bieliková, M.: Towards quantum-based privacy and voting. Phys. Lett. A 349, 75–81 (2006)ADSCrossRefzbMATHGoogle Scholar
- 86.Sharma, R.D., De, A.: Quantum voting using single qubits. Indian J. Sci. Technol. 9(42), 032329 (2016)CrossRefGoogle Scholar
- 87.Ghose, S., Kumar, A., Madhok, V., Hamel, A.M.: Multiparty quantum communication using multiqubit entanglement and teleportation. Phys. Res. Int. 2014, 948750 (2014)CrossRefGoogle Scholar
- 88.Tian, J.H., Zhang, J.Z., Li, Y.P.: A voting protocol based on the controlled quantum operation teleportation. Int. J. Theor. Phys. 55, 2303 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
- 89.Thapliyal, K., Sharma, R.D., Pathak, A.: Protocols for quantum binary voting. Int. J. Quantum Inf. 15(1), 1750007 (2017)CrossRefzbMATHGoogle Scholar
- 90.Lou, X.: Quantum distributed ballot scheme based on entanglement swapping. In: 10th International Conference on Trust. Security and Privacy in Computing and Communications, IEEE (2011)Google Scholar
- 91.Cao, H.J., Ding, L.Y., Jiang, X.L., Li, P.F.: A new proxy electronic voting scheme achieved by six-particle entangled states. Int. J. Theor. Phys. 57, 674 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
- 92.Borras, A., Plastino, A.R., Batle, J., Zander, C., Casas, M., Plastino, A.: Multiqubit systems: highly entangled states and entanglement distribution. J. Phys. A Math. Theor. 40, 13407 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 93.Zhang, J.L., Xie, S.C., Zhang, J.Z.: An elaborate secure quantum voting scheme. Int. J. Theor. Phys. 56, 3019 (2018)CrossRefzbMATHGoogle Scholar
- 94.Xue, P., Zhang, X.: A simple quantum voting scheme with multi-qubit entanglement. Sci. Rep. 7, 7586 (2017)ADSCrossRefGoogle Scholar
- 95.Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998)ADSMathSciNetCrossRefGoogle Scholar
- 96.Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 97.Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)ADSCrossRefzbMATHGoogle Scholar
- 98.Benenti, G., Casati, G., Strini, G.: Principles of Quantum Computation and Information-Volume I: Basic Concepts, p. 118. World scientific, Singapore (2004)CrossRefzbMATHGoogle Scholar
- 99.Pathak, A.: Experimental Quantum Mechanics in the Class Room: Testing Basic Ideas of Quantum Mechanics and Quantum Computing Using IBM Quantum Computer (2018). arXiv:1805.06275v1
- 100.Altepeter, J.B., James, D.F.V., Kwiat, P.G.: Quantum state tomography. In: Paris, M., Rehácek, J. (eds.) Quantum State Estimation. Lecture Notes in Physics, vol. 649. Springer, Berlin (2004) Google Scholar
- 101.Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, p. 409. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
- 102.Zhang, J.L., Zhan, J.Z., Xie, S.C.: A choreographed distributed electronic voting scheme. Int. J. Theor. Phys. 57, 2676 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
- 103.Vaccaro, J.A., Spring, J., Chefles, A.: Quantum protocols for anonymous voting and surveying. Phys. Rev. A 75, 012333 (2007)ADSCrossRefGoogle Scholar
- 104.Sun, X., Wang, Q., Kulicki, P.: A simple voting protocol on quantum blockchain. Int. J. Theor. Phys. 58, 275 (2018)CrossRefzbMATHGoogle Scholar
- 105.Zhou, N., Zeng, G., Zeng, W., Zhu, F.: Cross-center quantum identification scheme based on teleportation and entanglement swapping. Opt. Commun. 254, 380 (2005)ADSCrossRefGoogle Scholar
- 106.Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)ADSCrossRefGoogle Scholar
- 107.Banerjee, A., Pathak, A.: Maximally efficient protocols for direct secure quantum communication. Phys. Lett. A 376, 2944–2950 (2012)ADSCrossRefGoogle Scholar