Advertisement

Experimental realization of quantum teleportation using coined quantum walks

  • Yagnik Chatterjee
  • Vipin Devrari
  • Bikash K. BeheraEmail author
  • Prasanta K. Panigrahi
Article
  • 30 Downloads

Abstract

The goal of teleportation is to transfer the state of one particle to another particle. In coined quantum walks, conditional shift operators can introduce entanglement between position space and coin space. This entanglement resource can be used as a quantum channel for teleportation, as proposed by Wang et al. (Quantum Inf Process 16:221, 2017). Here, we demonstrate the implementation of quantum teleportation using quantum walks on a five-qubit quantum computer and a 32-qubit simulator provided by IBM quantum experience beta platform. We show the teleportation of single-qubit, two-qubit and three-qubit quantum states with circuit implementation on the quantum devices. The teleportation of Bell, W and GHZ states has also been demonstrated as special cases of the above states.

Keywords

IBM quantum experience Quantum teleportation Quantum walk Quantum state tomography 

Notes

Acknowledgements

YC and VD acknowledge the hospitality provided by IISER Kolkata. BKB is financially supported by DST Inspire Fellowship. We thank Wang, Shang and Xue for their original contribution to the concept of using quantum walks for teleportation. We are extremely grateful to IBM and IBM QE project. The discussions and opinions developed in this paper are only those of the authors and do not reflect the opinions of IBM or IBM QE team.

References

  1. 1.
    Horodecki, M., Horodecki, P., Horodecki, R.: General teleportation channel, singlet fraction, and qua-sidistillation. Phys. Rev. A 60, 1888–1898 (1999)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Banaszek, K.: Optimal quantum teleportation with an arbitrary pure state. Phys. Rev. A 62, 024301 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    Albeverio, S., Fei, S.-M., Yang, W.-L.: Optimal teleportation based on bell measurements. Phys. Rev. A 66, 012301 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    Oh, S., Lee, S., Lee, H.W.: Fidelity of quantum teleportation through noisy channels. Phys. Rev. A 66, 022316 (2002)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Venegas-Andraca, S.E.: Quantum walks: a comprehensive review. Quantum Inf. Process. 11, 1015 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Ambainis A.: Quantum random walks—new method for designing quantum algorithms. In: Geffert, V., Karhumaki, J., Bertoni, A., Preneel, B., Navrat, P., Bielikova, M. (eds.) SOFSEM 2008: Theory and Practice of Computer Science. SOFSEM: Lecture Notes in Computer Science, vol. 4910. Springer, Berlin, Heidelberg (2008)Google Scholar
  8. 8.
    Wang, Y., Shang, Y., Xue, P.: Generalized teleportation by quantum walks. Quantum Inf. Process. 16, 221 (2017)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Ye, M., Zhang, Y., Guo, G.: Quantum entanglement and quantum operation. Sci. China Ser. G-Phys. Mech. Astron. 51, 14 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    de Oliveira, J.L., Oliveira, D.S., Ramos, R.V.: Entanglement measure for pure six-qubit quantum states. Quantum Inf. Process. 11, 255 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ma, X.S., Qiao, Y., Zhao, G.X., Wang, A.M.: Tripartite entanglement of electron spins of noninteracting electron gases. Quantum Inf. Process. 12, 1807 (2013)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    IBM Quantum Experience. https://www.research.ibm.com/ibm-q/
  13. 13.
    Behera, B.K., Banerjee, A., Panigrahi, P.K.: Experimental realization of quantum cheque using a five-qubit quantum computer. Quantum Inf. Process. 16, 312 (2017)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Ghosh, D., Agarwal, P., Pandey, P., Behera, B.K., Panigrahi, P.K.: Automated Error Correction in IBM Quantum Computer and Explicit Generalization. Quantum Inf. Process. 17, 153 (2018)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Gangopadhyay, S., Manabputra, Behera, B.K., Panigrahi, P.K.: Generalization and demonstration of an entanglement based Deutsch-Jozsa like algorithm using a 5-qubit quantum computer. Quantum Inf. Process. 17, 160 (2018) Google Scholar
  16. 16.
    Vishnu, P.K., Joy, D., Behera, B.K., Panigrahi, P.K.: Experimental demonstration of non-local controlled-unitary quantum gates using a five-qubit quantum computer. Quantum Inf. Process. 17, 274 (2018)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Satyajit, S., Srinivasan, K., Behera, B.K., Panigrahi, P.K.: Nondestructive discrimination of a new family of highly entangled states in IBM quantum computer. Quantum Inf. Process. 17, 212 (2018)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Behera, B.K., Seth, S., Das, A., Panigrahi, P.K.: Demonstration of entanglement purification and swapping protocol to design quantum repeater in IBM quantum computer. Quantum Inf. Process. 18, 108 (2019)ADSCrossRefGoogle Scholar
  19. 19.
    Shi, R.H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurements. Quantum Inf. Process. 12, 921 (2013)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Wojcik, A., Grudka, A., Chhajlany, R.W.: Generation of inequivalent generalized Bell bases. Quantum Inf. Process. 2, 201 (2003)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Guo, Y., Zhao, Z., Wang, Y., Wang, P., Huang, D., Lee, M.H.: On implementing nondestructive triplet Toffoli gate with entanglement swapping operations via the GHZ state analysis. Quantum Inf. Process. 13, 2039 (2014)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Gong, L., Tian, C., Li, J., Zou, X.: Quantum network dialogue protocol based on continuous-variable GHZ states. Quantum Inf. Process. 17, 331 (2018)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Liao, C.H., Yang, C.W., Hwang, T.: Dynamic quantum secret sharing protocol based on GHZ state. Quantum Inf. Process. 13, 1907 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    Bai, C.M., Li, Z.H., Xu, T.T., Li, Y.M.: Quantum secret sharing using the d-dimensional GHZ state. Quantum Inf. Process. 16, 59 (2017)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Hu, J.R., Lin, Q.: W state generation by adding independent single photons. Quantum Inf. Process. 14, 2847 (2015)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Ji, Q., Liu, Y., Yin, X., Liu, X., Zhang, Z.: Quantum operation sharing with symmetric and asymmetric W states. Quantum Inf. Process. 12, 2453 (2013)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Wu, L.A., Byrd, M.S.: Self-protected quantum algorithms based on quantum state tomography. Quantum Inf. Process. 8, 1 (2009)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Swain, M., Rai, A., Behera, B.K., Panigrahi, P.K.: Experimental demonstration of the violations of Mermin’s and Svetlichny’s inequalities for W and GHZ states. Quantum Inf. Process. 18, 218 (2019)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics and AstronomyNational Institute of Technology RourkelaRourkelaIndia
  2. 2.Department of Physical SciencesIndian Institute of Science Education and Research KolkataMohanpurIndia
  3. 3.Bikash’s Quantum (OPC) Private LimitedMohanpur, NadiaIndia

Personalised recommendations