Automation of quantum Braitenberg vehicles using finite automata: Moore machines

  • Nimish Mishra
  • Rayala Sarath Chandra
  • Bikash K. BeheraEmail author
  • Prasanta K. Panigrahi


Since the advent of quantum computation, there have been attempts to apply quantum mechanics to robotics and develop quantum robots. In this paper, we discuss the working of classical Braitenberg vehicles and the various problems which lead us to propose a novel improvement by automating it using classical finite automata, Moore machines. We then improve by introducing an intrinsic nature to it such that it stops its motion without requiring external signals, by using entanglement. This leads to our design of a quantum automated Braitenberg vehicle which we improve by incorporating the possibility of external control over its movement. We implement the circuits in IBM quantum experience and obtain results matching our theoretical predictions. This paper makes the following contributions: an experimental verification of the quantum logic with reasonably good results despite decoherence and errors in quantum gate applications, the idea of introducing intrinsic behaviour using quantum mechanics, the idea of flexibility in developing manual external controls, and achieving better results than classical robots using lesser number of gates.


IBM quantum experience Quantum robots Automated classical Braitenberg vehicles Automated quantum Braitenberg vehicles Finite automata Moore machines 



N.M. and S.C.R. would like to thank IISER Kolkata for providing hospitality during which this work has been done. B.K.B. acknowledges the support of IISER-K Institute fellowship. The authors acknowledge the support of IBM quantum experience for producing experimental results. The views expressed are those of the authors and do not reflect the official policy or position of IBM or the IBM quantum experience team.


  1. 1.
    Landauer, R.: The physical nature of information. Phys. Lett. A 217, 188 (1996)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Benioff, P.: The computer as a physical system: a microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. J. Stat. Phys. 22, 563 (1980)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Feynman, R.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467 (1982)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Manin, Y.: Computable and Uncomputable. Sovetskoye Radio, Moscow (1980)Google Scholar
  5. 5.
    Deutsch, D.: Quantum theory, the Church–Turing principle and the universal quantum computer. In: Proceedings of the Royal Society (1985)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Nielsen, M.: Conditions for a class of entanglement transformations. Phys. Rev. Lett. 83, 436 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    Weihs, G., Jennewein, T., Simon, C., Weinfurter, H., Zeilinger, A.: Violation of Bell’s inequality under strict Einstein locality conditions. Phys. Rev. Lett. 81, 5039 (1998)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Benioff, P.: Quantum robots and environments. Phys. Rev. A 58, 893 (1998)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Dong, D.Y., Chen, C.L., Zhang, C.B., Chen, Z.H.: Quantum mechanics helps in learning for more intelligent robots. Chin. Phys. Lett. 23, 1691 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    Dong, D.Y., Chen, C.L., Zhang, C.B., Chen, Z.H.: Quantum robot: structure, algorithms and applications. Robotica 24, 513 (2006)CrossRefGoogle Scholar
  11. 11.
    Toffano, Z., Dubois, F.: Eigenlogic: interpretable quantum observables with applications to fuzzy behavior of vehicular robots. arXiv:1707.05654
  12. 12.
    Zizzi, P.A.: I, Quantum robot: quantum mind control on a quantum computer. arXiv:0812.4614
  13. 13.
    Braitenberg, V.: Vehicles: Experiments in Synthetic Psychology, Reprint edn. MIT Press, Cambridge (1986)Google Scholar
  14. 14.
    Moore machines, WikipediaGoogle Scholar
  15. 15.
    Srinivasan, K., Satyajit, S., Behera, B.K., Panigrahi, P.K.: Efficient quantum algorithm for solving travelling salesman problem: an IBM quantum experience. arxiv:1805.10928
  16. 16.
    Dash, A., Rout, S., Behera, B.K., Panigrahi, P.K.: quantum locker using a novel verification algorithm and its experimental realization in IBM quantum computer. arxiv:1710.05196
  17. 17.
    Vishnu, P.K., Joy, D., Behera, B.K., Panigrahi, P.K.: Experimental demonstration of non-local controlled-unitary quantum gates using a five-qubit quantum computer. Quantum Inf. Process. 17, 274 (2018)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Satyajit, S., Srinivasan, K., Behera, B.K., Panigrahi, P.K.: Nondestructive discrimination of a new family of highly entangled states in IBM quantum computer. Quantum Inf. Process. 17, 212 (2018)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Roy, S., Behera, B.K., Panigrahi, P.K.: Experimental realization of quantum violation of entropic noncontextual inequality in four dimension using IBM quantum computer. arxiv:1710.10717
  20. 20.
    Gangopadhyay, S., Manabputra, Behera, B.K., Panigrahi, P.K.: Generalization and demonstration of an entanglement-based Deutsch–Jozsa-like algorithm using a 5-qubit quantum computer. Quantum Inf. Process. 17, 160 (2018)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Behera, B.K., Seth, S., Das, A., Panigrahi, P.K.: Demonstration of entanglement purification and swapping protocol to design quantum repeater in IBM quantum computer. Quantum Inf. Process. 18, 108 (2019)ADSCrossRefGoogle Scholar
  22. 22.
    Jha, R., Das, D., Dash, A., Jayaraman, S., Behera, B.K., Panigrahi, P.K.: A Novel quantum N-Queens solver algorithm and its simulation and application to satellite communication using IBM quantum experience. arxiv:1806.10221
  23. 23.
    Dash, A., Sarmah, D., Behera, B.K., Panigrahi, P.K.: Exact search algorithm to factorize large biprimes and a triprime on IBM quantum computer. arxiv:1805.10478
  24. 24.
    Behera, B.K., Reza, T., Gupta, A., Panigrahi, P.K.: Designing quantum router in IBM quantum computer. Quantum Inf. Process. 18, 328 (2019)ADSCrossRefGoogle Scholar
  25. 25.
    Raghuvanshi, A., Fan, Y., Woyke, M., Perkowski, M.: Quantum robots for teenagers. In: Proceedings of the International Symposium on Multiple-Valued Logic (2007)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Nimish Mishra
    • 1
  • Rayala Sarath Chandra
    • 1
  • Bikash K. Behera
    • 2
    Email author
  • Prasanta K. Panigrahi
    • 2
  1. 1.Department of Computer Science and EngineeringIndian Institute of Information Technology KalyaniKalyaniIndia
  2. 2.Department of Physical SciencesIndian Institute of Science Education and Research KolkataMohanpurIndia

Personalised recommendations