Advertisement

Quantum digital signature in a network

  • Changho Hong
  • Jingak Jang
  • Jino HeoEmail author
  • Hyung-Jin Yang
Article
  • 26 Downloads

Abstract

We propose a quantum digital signature in a network consisting of one signer, multiple verifiers, and a trusted center (TC). The protocol guarantees that messages and signed messages are not counterfeited, and it authenticates the source of the messages. In addition, a signer (or a verifier) cannot, at a later time, deny having signed (received) the message. Theoretically, our quantum digital signature guarantees the security through quantum mechanics.

Keywords

Quantum signature Quantum communication Quantum cryptography Communication security 

Notes

Acknowledgements

This work was supported by the R&D Convergence Program of NST (National Research Council of Science and Technology) of Republic of Korea (Grant No. CAP-18-08-KRISS) and by Basis Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2019R1I1A1A01042699).

References

  1. 1.
    Pfitzmann, B.: Sorting out signature schemes. In: CCS ‘93 Proceedings of the 1st ACM Conference on Computer and Communications Security, pp. 74–85 (1993)Google Scholar
  2. 2.
    Rivest, R.: Cryptography, pp. 717–775. Elsevier, Amsterdam (1990)zbMATHGoogle Scholar
  3. 3.
    Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21, 120 (1978)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Shor, P.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41, 303 (1999)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Shor, P.W.: Algorithms for Quantum Computation: Discrete Logarithms and Factoring, pp. 20–22. IEEE Computer Society Press, Los Alamitos (1994)Google Scholar
  6. 6.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 5, 1484 (1997)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gottesman, D., Chuang, I.L.: Quantum digital signatures. e-print arXiv:quant-ph/0105032 (2001)
  8. 8.
    Buhrman, H., Crepeaum C., Gottesmanm D., Smith, A., Tapp, A.: Authentication of quantum messages. In: Proceedings of 43rd Annual IEEE Symposium on the Foundations of Computer Science (FOCS ‘02), pp. 449–458 (2002)Google Scholar
  9. 9.
    Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65, 042312 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    Curty, M., Lutkenhaus, N.: Comment on “Arbitrated quantum-signature scheme”. Phys. Rev. A 77, 046301 (2008)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Zeng, G.H.: Reply to “Comment on ‘Arbitrated quantum-signature scheme’”. Phys. Rev. A 78, 016301 (2008)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Lee, H., Hong, C.H., Kim, H., Lim, J., Yang, H.J.: Arbitrated quantum signature scheme with message recovery. Phys. Lett. A 321, 295 (2004)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Wang, J., Zhang, Q., Liang, L.M., Tang, C.J.: Comment on: “Arbitrated quantum signature scheme with message recovery”. Phys. Lett. A 347, 262 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79, 054307 (2009)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Zou, X., Qiu, D.: Unextendible product bases and extremal density matrices with positive partial transpose. Phys. Rev. A 84, 042325 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Yoon, C.S., Kang, M.S., Lim, J.I., Yang, H.J.: Quantum signature scheme based on a quantum search algorithm. Phys. Scr. 90, 15103 (2015)CrossRefGoogle Scholar
  17. 17.
    Zhang, P., Zhou, X.Q., Li, Z.W.: Identification scheme based on quantum teleportation for wireless communication networks. Acta Phys. Sin. 63, 130301 (2014)Google Scholar
  18. 18.
    Clarke, P.J., Collins, R.J.: Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light. Nat. Commun. 3, 1174 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Maurer, P.C., et al.: Room-temperature quantum bit memory exceeding one second. Science 336, 1283 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Robert, J.C., Ross, J.D., Vedran, D., Petros, W., Patrick, J.C., Erika, A., John, J., Gerald, S.B.: Realization of quantum digital signatures without the requirement of quantum memory. Phys. Rev. Lett. 113, 040502 (2014)CrossRefGoogle Scholar
  21. 21.
    Ekert, A.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Yang, Y.G., Zhou, Z., Teng, Y.W., Wen, Q.Y.: Arbitrated quantum signature with an untrusted arbitrator. Eur. Phys. J. D 61, 773–778 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    Liu, F., Zhang, K., Cao, T.: Security weaknesses in arbitrated quantum signature protocols. Int. J. Theor. Phys. 53, 277 (2014)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Kang, M.S., Hong, C., Heo, J., Lim, J.I., Yang, H.J.: Quantum signature scheme using a single qubit rotation operator. Int. J. Theor. Phys. 54, 614–629 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Luo, M.X., Chen, X.B., Yun, D., Yang, Y.X.: Quantum signature scheme with weak arbitrator. Int. J. Theor. Phys. 51, 2135 (2012)CrossRefGoogle Scholar
  26. 26.
    Kang, M.S., Choi, H.W., Pramanik, T., Han, S.W., Moon, S.: Universal quantum encryption for quantum signature using the swap test. Quantum Inf. Process. 17, 254 (2018)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    Wójcik, A.: Eavesdropping on the “Ping-Pong” quantum communication protocol. Phys. Rev. Lett. 90, 157901 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    Pavičić, M.: In quantum direct communication an undetectable eavesdropper can always tell Ψ from Φ Bell states in the message mode. Phys. Rev. A 87, 042326 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    Menezes, A.J., van Oorschot, P.C., Vantone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)Google Scholar
  31. 31.
    Forouzan, B.A.: Cryptography and Network Security. Mcgraw Hill International Edition, New York (2007)Google Scholar
  32. 32.
    Kashefi, E., Kerenidis, I.: Statistical zero knowledge and quantum one-way functions. Theor. Comput. Sci. 378(1), 101–116 (2007)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Luo, M.X., Chen, X.B., Yun, D., Yang, Y.X.: Quantum public-key cryptosystem. Int. J. Theor. Phys. 51, 912–924 (2012)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    Branciard, C., Gisin, N., Kraus, B., Scarani, V.: Security of two quantum cryptography protocols using the same four qubit states. Phys. Rev. A 72, 032301 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    Li, C.Y., Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum secure communication with a publicly known key. Chin. Phys. B 17, 2352 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    Shen, D., Ma, W., Wang, L.: Two-party quantum key agreement with four-qubit cluster states. Quantum Inf. Process. 13, 2313–2324 (2014)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Curty, M., Xu, F., Cui, W., Lim, C.C.W., Tamaki, K., Lo, H.: Finite-key analysis for measurement-device-independent quantum key distribution. Nat. Commun. 5, 3732 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    Zhang, M.H., Fi, H.F., Xia, Z.Q., Feng, X.Y.: Semiquantum secure direct communication using EPR pairs. Quantum Inf. Process. 16, 117 (2017)ADSCrossRefGoogle Scholar
  41. 41.
    Stinson D.R.: Cyrptography: theory and practice, 3rd edn, pp. 281–316. Chapman and Hall/CRC (2005)Google Scholar
  42. 42.
    Lim, C.C.W., Curty, M., Walenta, N., Xu, F., Zbinden, H.: Concise security bounds for practical decoy-state quantum key distribution. Phys. Rev. A 89, 022307 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    Amiri, R., Wallden, P., Kent, A., Andersson, E.: Secure quantum signatures using insecure quantum channel. Phys. Rev. A 93, 032325 (2016)ADSCrossRefGoogle Scholar
  44. 44.
    Devetak, I., Winter, A.: Distillation of secret key and entanglement from quantum states. Proc. R. Soc. Lond. A 461, 207 (2005)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Electronics and Telecommunications Research InstituteYuseong, DaejeonSouth Korea
  2. 2.College of Electrical and Computer EngineeringChungbuk National UniversityCheongjuSouth Korea
  3. 3.Department of PhysicsKorea UniversityYeongiSouth Korea

Personalised recommendations