Advertisement

Multiphoton process in cavity QED photons for implementing a three-qubit quantum gate operation

  • Moteb M. AlqahtaniEmail author
Article
  • 12 Downloads

Abstract

Based on cavity QED of free atoms, we theoretically investigate the implementation of a three-qubit quantum phase gate in which the three qubits are represented by the photons in modes of the cavity. A single four-level atom in double-V type passing through the high-Q cavity is used to implement the gate. We apply the theory of multiphoton resonance and use two-level effective Hamiltonians to predict the proper values for detunings, coupling constants, and interaction times. By the use of both the density matrix approach and wave function method, the influence of the decoherence processes is theoretically and numerically analyzed. Further, we address the effects of deviation in detunings and coupling coefficients and find that the gate operation is substantially insensitive to such variations. Finally, we show that the proposed scheme here can be extended for the implementation of multiqubit quantum phase gates.

Keywords

Quantum information processing Multimode cavity QED Multiphoton process 

Notes

Acknowledgements

The author would like to thank F. Maiz and M. Tohari for helpful discussions and comments on the manuscript. This work is supported by Scientific Research Deanship (SRD) at King Khalid University (KKU), Saudi Arabia.

References

  1. 1.
    Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O‘Brien, J .L.: Quantum computers. Nature 464, 45–53 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    Browne, D., Bose, S., Mintert, F., Kim, M.S.: From quantum optics to quantum technologies. Prog. Quantum Electron. 54, 2–18 (2017)CrossRefGoogle Scholar
  3. 3.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325–328 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    Long, G.L.: Grover algorithm with zero theoretical failure rate. Phys. Rev. A 64(2), 022307 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    Kempe, J., Bacon, D., DiVincenzo, D.P., Whaley, K.: Encoded university from a single physical interaction. Quantum Inf. Comput. 1(4), 33–55 (2001)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74(20), 4091–4094 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    Jonathan, A.J., Michele, M., Rasmus, H.H.: Implementation of a quantum search algorithm on a quantum computer. Nature 393, 344–346 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79(1), 135–174 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    Hanson, R., Awschalom, D.D.: Coherent manipulation of single spins in semiconductors. Nature 453, 1043–1049 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Raimond, J.M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73(3), 565–582 (2001)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Buluta, I., Ashhab, S., Nori, F.: Natural and artificial atoms for quantum computation. Rep. Prog. Phys. 74(10), 104401 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    You, J.Q., Nori, F.: Atomic physics and quantum optics using superconducting circuits. Nature 474(7353), 589–597 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Mabuchi, H., Doherty, A.C.: Cavity quantum electrodynamics: coherence in context. Science 298(5597), 1372–1377 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    van Enk, S.J., Kimble, H.J., Mabuchi, H.: Quantum information processing in cavity-QED. Quantum Inf. Process. 3(1–5), 75–90 (2004)zbMATHCrossRefGoogle Scholar
  16. 16.
    Walther, H., Varcoe, B.T.H., Englert, B.G., Becker, T.: Cavity quantum electrodynamics. Rep. Prog. Phys. 69(5), 1325 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    Miller, R., Northup, T.E., Birnbaum, K.M., Boca, A., Boozer, A.D., Kimble, H.J.: Trapped atoms in cavity QED: coupling quantized light and matter. J. Phys. B At. Mol. Opt. Phys. 38(9), S551 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    Reiserer, A., Rempe, G.: Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87(4), 1379–1418 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    Hacker, B., Welte, S., Rempe, G., Ritter, S.: A photon–photon quantum gate based on a single atom in an optical resonator. Nature 536, 193–196 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    O‘Brien, J .L., Furusawa, A., Vŭcković, : Photonic quantum technologies. Nat. Photon. 3, 687–695 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., fiShor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457–3467 (1995)ADSCrossRefGoogle Scholar
  22. 22.
    Liu, Y., Long, G.L., Sun, Y.: Analytic one-bit and CNOT gate constractions of general n-qubit controlled gates. Int. J. Quantum Inf. 6(3), 447–462 (2008)zbMATHCrossRefGoogle Scholar
  23. 23.
    Zubairy, M.S., Matsko, A.B., Scully, M.O.: Resonant enhancement of high-order optical nonlinearities based on atomic coherence. Phys. Rev. A 65, 043804 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    Chiaverini, J., Leibfried, D., Schaetz, T., Barrett, M.D., Blakestad, R.B., Britton, J., Itano, W.M., Jost, J.D., Knill, E., Langer, C., Ozeri, R., Wineland, D.J.: Realization of quantum error correction. Nature 432, 602–605 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    Chang, J.T., Zubairy, M.S.: Three-qubit phase gate based on cavity quantum electrodynamics. Phys. Rev. A 77(1), 012329 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54(1), 147 (1996)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Zhang, J., Liu, W., Deng, Z., Lu, Z., Long, G.L.: Modularization of a multi-qubit controlled phase gate and its nuclear magnetic resonance implementation. J. Opt. B Quantum Semiclass. Opt. 7(1), 22 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    Zou, X., Li, K., Guo, G.: Linear optical scheme for direct implementation of a nondestructive N-qubit controlled phase gate. Phys. Rev. A 74, 044305 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    Wang, X., Sørensen, A., Mølmer, K.: Multibit gates for quantum computing. Phys. Rev. Lett. 86(17), 3907–3910 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    Yang, C.-P., Zheng, S.-B., Nori, F.: Multiqubit tunable phase gate of one qubit simultaneously controlling \(n\) qubits in a cavity. Phys. Rev. A 82(6), 062326 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    Yang, C.-P., Liu, Y.-X., Nori, F.: Phase gate of one qubit simultaneously controlling \(n\) qubits in a cavity. Phys. Rev. A 81(6), 062323 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    Ye, B., Zheng, Z.-F., Yang, C.-P.: Multiplex-controlled phase gate with qubits distributed in a multicavity system. Phys. Rev. A 97(6), 062336 (2018)ADSCrossRefGoogle Scholar
  33. 33.
    Fan, Y.-J., Zheng, Z.-F., Zhang, Y., Lu, D.-M., Yang, C.-P.: One-step implementation of a multi-target-qubit controlled phase gate with cat-state qubits in circuit QED. Front. Phys. 14(2), 21602 (2019)CrossRefGoogle Scholar
  34. 34.
    Shore, B.W.: Two-level behavior of coherent excitation of multilevel systems. Phys. Rev. A 24(3), 1413–1418 (1981)ADSCrossRefGoogle Scholar
  35. 35.
    Everitt, M.S., Garraway, B.M.: Multiphoton resonances for all-optical quantum logic with multiple cavities. Phys. Rev. A 90(1), 012335 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    Alqahtani, M.M.: Quantum phase gate based on multiphoton process in multimode cavity QED. Quantum Inf. Process. 17(9).  https://doi.org/10.1007/s11128-018-1979-6
  37. 37.
    Liu, Y.-X., You, J.Q., Wei, L.F., Sun, C.P., Nori, F.: Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit. Phys. Rev. Lett. 95(8), 087001 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  39. 39.
    Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48(2), 119–130 (1976)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Kuhr, S., Gleyzes, S., Guerlin, C., Bernu, J., Hoff, U.B., Deléglise, S., Osnaghi, S., Brune, M., Raimond, J.M., Haroche, S., Jacques, E., Bosland, P., Visentin, B.: Ultrahigh finesse Fabry–Pérot superconducting resonator. Appl. Phys. Lett. 90, 164101 (2007)ADSCrossRefGoogle Scholar
  41. 41.
    Dalibard, J., Castin, Y., Mølmer, K.: Wave-function approach to dissipative processes in quantum optics. Phys. Rev. Lett. 68(5), 580–583 (1992)ADSCrossRefGoogle Scholar
  42. 42.
    Kollár, A.J., Papageorge, A.T., Vaidya, V.D., Guo, Y., Keeling, J., Lev, B.L.: Supermode-density-wave-polariton condensation with a Bose–Einstein condensate in a multimode cavity. Nat. Commun. 8(14386), 17 (2017)Google Scholar
  43. 43.
    Hamsen, C., Tolazzi, K.N., Wilk, T., Rempe, G.: Strong coupling between photons of two light fields mediated by one atom. Nat. Phys. 14, 885–889 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsKing Khalid UniversityAbhaSaudi Arabia

Personalised recommendations