Multiphoton process in cavity QED photons for implementing a three-qubit quantum gate operation
- 12 Downloads
Abstract
Based on cavity QED of free atoms, we theoretically investigate the implementation of a three-qubit quantum phase gate in which the three qubits are represented by the photons in modes of the cavity. A single four-level atom in double-V type passing through the high-Q cavity is used to implement the gate. We apply the theory of multiphoton resonance and use two-level effective Hamiltonians to predict the proper values for detunings, coupling constants, and interaction times. By the use of both the density matrix approach and wave function method, the influence of the decoherence processes is theoretically and numerically analyzed. Further, we address the effects of deviation in detunings and coupling coefficients and find that the gate operation is substantially insensitive to such variations. Finally, we show that the proposed scheme here can be extended for the implementation of multiqubit quantum phase gates.
Keywords
Quantum information processing Multimode cavity QED Multiphoton processNotes
Acknowledgements
The author would like to thank F. Maiz and M. Tohari for helpful discussions and comments on the manuscript. This work is supported by Scientific Research Deanship (SRD) at King Khalid University (KKU), Saudi Arabia.
References
- 1.Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O‘Brien, J .L.: Quantum computers. Nature 464, 45–53 (2010)ADSCrossRefGoogle Scholar
- 2.Browne, D., Bose, S., Mintert, F., Kim, M.S.: From quantum optics to quantum technologies. Prog. Quantum Electron. 54, 2–18 (2017)CrossRefGoogle Scholar
- 3.Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
- 4.Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325–328 (1997)ADSCrossRefGoogle Scholar
- 5.Long, G.L.: Grover algorithm with zero theoretical failure rate. Phys. Rev. A 64(2), 022307 (2001)ADSCrossRefGoogle Scholar
- 6.Kempe, J., Bacon, D., DiVincenzo, D.P., Whaley, K.: Encoded university from a single physical interaction. Quantum Inf. Comput. 1(4), 33–55 (2001)MathSciNetzbMATHGoogle Scholar
- 7.Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74(20), 4091–4094 (1995)ADSCrossRefGoogle Scholar
- 8.Jonathan, A.J., Michele, M., Rasmus, H.H.: Implementation of a quantum search algorithm on a quantum computer. Nature 393, 344–346 (1998)ADSCrossRefGoogle Scholar
- 9.Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79(1), 135–174 (2007)ADSCrossRefGoogle Scholar
- 10.Hanson, R., Awschalom, D.D.: Coherent manipulation of single spins in semiconductors. Nature 453, 1043–1049 (2008)ADSCrossRefGoogle Scholar
- 11.Raimond, J.M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73(3), 565–582 (2001)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 12.Buluta, I., Ashhab, S., Nori, F.: Natural and artificial atoms for quantum computation. Rep. Prog. Phys. 74(10), 104401 (2011)ADSCrossRefGoogle Scholar
- 13.You, J.Q., Nori, F.: Atomic physics and quantum optics using superconducting circuits. Nature 474(7353), 589–597 (2011)ADSCrossRefGoogle Scholar
- 14.Mabuchi, H., Doherty, A.C.: Cavity quantum electrodynamics: coherence in context. Science 298(5597), 1372–1377 (2002)ADSCrossRefGoogle Scholar
- 15.van Enk, S.J., Kimble, H.J., Mabuchi, H.: Quantum information processing in cavity-QED. Quantum Inf. Process. 3(1–5), 75–90 (2004)zbMATHCrossRefGoogle Scholar
- 16.Walther, H., Varcoe, B.T.H., Englert, B.G., Becker, T.: Cavity quantum electrodynamics. Rep. Prog. Phys. 69(5), 1325 (2006)ADSCrossRefGoogle Scholar
- 17.Miller, R., Northup, T.E., Birnbaum, K.M., Boca, A., Boozer, A.D., Kimble, H.J.: Trapped atoms in cavity QED: coupling quantized light and matter. J. Phys. B At. Mol. Opt. Phys. 38(9), S551 (2005)ADSCrossRefGoogle Scholar
- 18.Reiserer, A., Rempe, G.: Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87(4), 1379–1418 (2015)ADSCrossRefGoogle Scholar
- 19.Hacker, B., Welte, S., Rempe, G., Ritter, S.: A photon–photon quantum gate based on a single atom in an optical resonator. Nature 536, 193–196 (2016)ADSCrossRefGoogle Scholar
- 20.O‘Brien, J .L., Furusawa, A., Vŭcković, : Photonic quantum technologies. Nat. Photon. 3, 687–695 (2009)ADSCrossRefGoogle Scholar
- 21.Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., fiShor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457–3467 (1995)ADSCrossRefGoogle Scholar
- 22.Liu, Y., Long, G.L., Sun, Y.: Analytic one-bit and CNOT gate constractions of general n-qubit controlled gates. Int. J. Quantum Inf. 6(3), 447–462 (2008)zbMATHCrossRefGoogle Scholar
- 23.Zubairy, M.S., Matsko, A.B., Scully, M.O.: Resonant enhancement of high-order optical nonlinearities based on atomic coherence. Phys. Rev. A 65, 043804 (2002)ADSCrossRefGoogle Scholar
- 24.Chiaverini, J., Leibfried, D., Schaetz, T., Barrett, M.D., Blakestad, R.B., Britton, J., Itano, W.M., Jost, J.D., Knill, E., Langer, C., Ozeri, R., Wineland, D.J.: Realization of quantum error correction. Nature 432, 602–605 (2004)ADSCrossRefGoogle Scholar
- 25.Chang, J.T., Zubairy, M.S.: Three-qubit phase gate based on cavity quantum electrodynamics. Phys. Rev. A 77(1), 012329 (2008)ADSCrossRefGoogle Scholar
- 26.Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54(1), 147 (1996)ADSMathSciNetCrossRefGoogle Scholar
- 27.Zhang, J., Liu, W., Deng, Z., Lu, Z., Long, G.L.: Modularization of a multi-qubit controlled phase gate and its nuclear magnetic resonance implementation. J. Opt. B Quantum Semiclass. Opt. 7(1), 22 (2004)ADSCrossRefGoogle Scholar
- 28.Zou, X., Li, K., Guo, G.: Linear optical scheme for direct implementation of a nondestructive N-qubit controlled phase gate. Phys. Rev. A 74, 044305 (2006)ADSCrossRefGoogle Scholar
- 29.Wang, X., Sørensen, A., Mølmer, K.: Multibit gates for quantum computing. Phys. Rev. Lett. 86(17), 3907–3910 (2001)ADSCrossRefGoogle Scholar
- 30.Yang, C.-P., Zheng, S.-B., Nori, F.: Multiqubit tunable phase gate of one qubit simultaneously controlling \(n\) qubits in a cavity. Phys. Rev. A 82(6), 062326 (2010)ADSCrossRefGoogle Scholar
- 31.Yang, C.-P., Liu, Y.-X., Nori, F.: Phase gate of one qubit simultaneously controlling \(n\) qubits in a cavity. Phys. Rev. A 81(6), 062323 (2010)ADSCrossRefGoogle Scholar
- 32.Ye, B., Zheng, Z.-F., Yang, C.-P.: Multiplex-controlled phase gate with qubits distributed in a multicavity system. Phys. Rev. A 97(6), 062336 (2018)ADSCrossRefGoogle Scholar
- 33.Fan, Y.-J., Zheng, Z.-F., Zhang, Y., Lu, D.-M., Yang, C.-P.: One-step implementation of a multi-target-qubit controlled phase gate with cat-state qubits in circuit QED. Front. Phys. 14(2), 21602 (2019)CrossRefGoogle Scholar
- 34.Shore, B.W.: Two-level behavior of coherent excitation of multilevel systems. Phys. Rev. A 24(3), 1413–1418 (1981)ADSCrossRefGoogle Scholar
- 35.Everitt, M.S., Garraway, B.M.: Multiphoton resonances for all-optical quantum logic with multiple cavities. Phys. Rev. A 90(1), 012335 (2014)ADSCrossRefGoogle Scholar
- 36.Alqahtani, M.M.: Quantum phase gate based on multiphoton process in multimode cavity QED. Quantum Inf. Process. 17(9). https://doi.org/10.1007/s11128-018-1979-6
- 37.Liu, Y.-X., You, J.Q., Wei, L.F., Sun, C.P., Nori, F.: Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit. Phys. Rev. Lett. 95(8), 087001 (2005)ADSCrossRefGoogle Scholar
- 38.Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
- 39.Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48(2), 119–130 (1976)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 40.Kuhr, S., Gleyzes, S., Guerlin, C., Bernu, J., Hoff, U.B., Deléglise, S., Osnaghi, S., Brune, M., Raimond, J.M., Haroche, S., Jacques, E., Bosland, P., Visentin, B.: Ultrahigh finesse Fabry–Pérot superconducting resonator. Appl. Phys. Lett. 90, 164101 (2007)ADSCrossRefGoogle Scholar
- 41.Dalibard, J., Castin, Y., Mølmer, K.: Wave-function approach to dissipative processes in quantum optics. Phys. Rev. Lett. 68(5), 580–583 (1992)ADSCrossRefGoogle Scholar
- 42.Kollár, A.J., Papageorge, A.T., Vaidya, V.D., Guo, Y., Keeling, J., Lev, B.L.: Supermode-density-wave-polariton condensation with a Bose–Einstein condensate in a multimode cavity. Nat. Commun. 8(14386), 17 (2017)Google Scholar
- 43.Hamsen, C., Tolazzi, K.N., Wilk, T., Rempe, G.: Strong coupling between photons of two light fields mediated by one atom. Nat. Phys. 14, 885–889 (2018)CrossRefGoogle Scholar