Advertisement

Least-squares solutions to polynomial systems of equations with quantum annealing

  • Tyler H. ChangEmail author
  • Thomas C. H. Lux
  • Sai Sindhura Tipirneni
Article
  • 86 Downloads

Abstract

This work proposes and analyzes a methodology for finding least-squares solutions to the systems of polynomial equations. Systems of polynomial equations are ubiquitous in computational science, with major applications in machine learning and computer security (i.e., model fitting and integer factorization). The proposed methodology maps the squared-error function for a polynomial equation onto the Ising–Hamiltonian model, ensuring that the approximate solutions (by least squares) to real-world problems can be computed on a quantum annealer even when the exact solutions do not exist. Hamiltonians for integer factorization and polynomial systems of equations are implemented and analyzed for both logical optimality and physical practicality on modern quantum annealing hardware.

Keywords

Least squares Quantum annealing Polynomial systems of equations Prime factorization Root finding 

Notes

Acknowledgements

The authors would like to thank Wu-chun Feng and Mohamed W. Hassan for their council and feedback. Also, the authors would like to acknowledge the anonymous reviewers for their helpful comments, which greatly improved this paper.

References

  1. 1.
    Aharonov, D., Van Dam, W., Kempe, J., Landau, Z., Lloyd, S., Regev, O.: Adiabatic quantum computation is equivalent to standard quantum computation. SIAM Rev. 50(4), 755–787 (2008)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Albash, T., Lidar, D.A.: Adiabatic quantum computation. Rev. Mod. Phys. 90(1), 015002 (2018)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Alghassi, H., Dridi, R., Tayur, S.: Graver bases via quantum annealing with application to non-linear integer programs. arXiv preprint arXiv:1902.04215 (2019)
  4. 4.
    Andriyash, E., Bian, Z., Chudak, F., Drew-Brook, M., King, A.D., Macready, W.G., Roy, A.: Boosting Integer Factoring Performance via Quantum Annealing Offsets. D-Wave White Papers, Hanover (2016)Google Scholar
  5. 5.
    Barahona, F.: On the computational complexity of Ising spin glass models. J. Phys. A: Math. Gen. 15(10), 3241 (1982)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549(7671), 195 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    Boixo, S., Rønnow, T.F., Isakov, S.V., Wang, Z., Wecker, D., Lidar, D.A., Martinis, J.M., Troyer, M.: Evidence for quantum annealing with more than one hundred qubits. Nat. Phys. 10(3), 218 (2014)CrossRefGoogle Scholar
  8. 8.
    Boothby, K., Bunyk, P., Raymond, J., Roy, A.: Next-generation topology of d-wave quantum processors. D-Wave White Papers 22, 28 (2018)Google Scholar
  9. 9.
    Borle, A., Lomonaco, S.J.: Analyzing the quantum annealing approach for solving linear least squares problems. In: International Workshop on Algorithms and Computation, pp. 289–301. Springer, Berlin (2019)Google Scholar
  10. 10.
    Cai, J., Macready, W.G., Roy, A.: A practical heuristic for finding graph minors. arXiv preprint arXiv:1406.2741 (2014)
  11. 11.
    Chang, C.C., Gambhir, A., Humble, T.S., Sota, S.: Quantum annealing for systems of polynomial equations. Sci. Rep. 9(1), 10258 (2019)ADSCrossRefGoogle Scholar
  12. 12.
    Dattani, N.: Quadratization in discrete optimization and quantum mechanics. arXiv preprint arXiv:1901.04405 (2019)
  13. 13.
    Dridi, R., Alghassi, H.: Prime factorization using quantum annealing and computational algebraic geometry. Sci. Rep. 7, 43048 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    Elgart, A., Hagedorn, G.A.: A note on the switching adiabatic theorem. J. Math. Phys. 53(10), 102202 (2012)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins University Press, Baltimore (2013)zbMATHGoogle Scholar
  16. 16.
    Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 150502 (2009)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Jiang, S., Britt, K.A., McCaskey, A.J., Humble, T.S., Kais, S.: Quantum annealing for prime factorization. Sci. Rep. 8, 1–9 (2018)CrossRefGoogle Scholar
  18. 18.
    Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E 58(5), 5355 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    Karimi, S., Ronagh, P.: Practical integer-to-binary mapping for quantum annealers. Quantum Inf. Process. 18(4), 94 (2019)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Khoshaman, A., Vinci, W., Denis, B., Andriyash, E., Amin, M.H.: Quantum variational autoencoder. Quantum Sci. Technol. 4(1), 014001 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Pakin, S.: Performing fully parallel constraint logic programming on a quantum annealer. Theory Pract. Logic Program. 18(5–6), 928–949 (2018)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Peng, X., Liao, Z., Xu, N., Qin, G., Zhou, X., Suter, D., Du, J.: Quantum adiabatic algorithm for factorization and its experimental implementation. Phys. Rev. Lett. 101(22), 220405 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    Ray, P., Chakrabarti, B.K., Chakrabarti, A.: Sherrington–Kirkpatrick model in a transverse field: absence of replica symmetry breaking due to quantum fluctuations. Phys. Rev. B 39(16), 11828 (1989)ADSCrossRefGoogle Scholar
  25. 25.
    Rosenberg, I.G.: Reduction of bivalent maximization to the quadratic case. Cahiers du Centre d’etudes de Recherche Operationnelle 17, 71–74 (1975)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Santoro, G.E., Martoňák, R., Tosatti, E., Car, R.: Theory of quantum annealing of an Ising spin glass. Science 295(5564), 2427–2430 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Steane, A.: Quantum computing. Rep. Prog. Phys. 61(2), 117 (1998)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Subaşı, Y.B.U., Somma, R.D., Orsucci, D.: Quantum algorithms for systems of linear equations inspired by adiabatic quantum computing. Phys. Rev. Lett. 122, 060504 (2019)ADSCrossRefGoogle Scholar
  30. 30.
    Watson, L.T., Sosonkina, M., Melville, R.C., Morgan, A.P., Walker, H.F.: Algorithm 777: Hompack90: a suite of fortran 90 codes for globally convergent homotopy algorithms. ACM Trans. Math. Softw. (TOMS) 23(4), 514–549 (1997)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Wen, J., Kong, X., Wei, S., Wang, B., Xin, T., Long, G.: Experimental realization of quantum algorithms for a linear system inspired by adiabatic quantum computing. Phys. Rev. A 99, 012320 (2019)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Tyler H. Chang
    • 1
    Email author
  • Thomas C. H. Lux
    • 1
  • Sai Sindhura Tipirneni
    • 1
  1. 1.Department of Computer ScienceVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations