Work and heat value of bound entanglement

  • Aslı Tuncer
  • Mohsen Izadyari
  • Ceren B. Dağ
  • Fatih OzaydinEmail author
  • Özgür E. Müstecaplıoğlu


Entanglement has recently been recognized as an energy resource which can outperform classical resources if decoherence is relatively low. Multi-atom entangled states can mutate irreversibly to so-called bound entangled (BE) states under noise. Resource value of BE states in information applications has been under critical study, and a few cases where they can be useful have been identified. We explore the energetic value of typical BE states. Maximal work extraction is determined in terms of ergotropy. Since the BE states are nonthermal, extracting heat from them is less obvious. We compare single and repeated interaction schemes to operationally define and harvest heat from BE states. BE and free entangled (FE) states are compared in terms of their ergotropy and maximal heat values. Distinct roles of distillability in work and heat values of FE and BE states are pointed out. Decoherence effects in dynamics of ergotropy and mutation of FE states into BE states are examined to clarify significance of the work value of BE states. Thermometry of distillability of entanglement using micromaser cavity is proposed.


Quantum entanglement Quantum coherence Quantum thermodynamics 



Ö. E. M. thanks to M. Paternostro for fruitful discussions. F. O. and Ö. E. M. acknowledge Isik University Scientific Research Fund, Grant No. BAP-15B103. F.O., A.T, and Ö. E. M. acknowledge the support by TUBITAK, Grant No. 116F303 and by the EU-COST Action (CA15220).

Compliance with ethical standards

Ethics statement

This work did not involve any active collection of human data.

Data accessibility statement

This work does not have any experimental data.

Competing financial interests statement

We have no competing financial interests.

Competing interests statement

We have no competing interests.


  1. 1.
    Horodecki, M., Horodecki, P., Horodecki, R.: Mixed-State Entanglement and Distillation: Is there a “Bound” Entanglement in Nature? Phys. Rev. Lett. 80, 5239–5242 (1998)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Yang, D., Horodecki, M., Horodecki, R., Synak-Radtke, B.: Irreversibility for all bound entangled states. Phys. Rev. Lett. 95, 190501 (2005)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Brandão, F.G.S.L., Plenio, M.B.: Entanglement theory and the second law of thermodynamics. Nat. Phys. 4, 873–877 (2008)CrossRefGoogle Scholar
  5. 5.
    Horodecki, M., Oppenheim, J., Horodecki, R.: Are the laws of entanglement theory thermodynamical? Phys. Rev. Lett. 89, 240403 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    Brandão, F.G.S.L., Plenio, M.B.: A reversible theory of entanglement and its relation to the second law. Commun. Math. Phys. 295, 829–851 (2010)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Horodecki, M.: Quantum entanglement: reversible path to thermodynamics. Nat. Phys. 4, 833–834 (2008)CrossRefGoogle Scholar
  8. 8.
    Brandão, F.G.S.L., Horodecki, M., Oppenheim, J., Renes, J.M., Spekkens, R.W.: Resource theory of quantum states out of thermal equilibrium. Phys. Rev. Lett. 111, 250404 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Allahverdyan, A.E., Balian, R., Nieuwenhuizen, T.M.: Maximal work extraction from finite quantum systems. EPL (Europhysics Letters) 67, 565 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Francica, G., Goold, J., Plastina, F., Paternostro, M.: Daemonic ergotropy: enhanced work extraction from quantum correlations. NPJ Quant. Inf. 3, 12 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    Fusco, L., Paternostro, M., De Chiara, G.: Work extraction and energy storage in the Dicke model. Phys. Rev. E 94, 052122 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    Hsieh, C.-Y., Lee, R.-K.: Work extraction and fully entangled fraction. Phys. Rev. A 96, 012107 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    Brandner, K., Bauer, M., Seifert, U.: Universal coherence-induced power losses of quantum heat engines in linear response. Phys. Rev. Lett. 119, 170602 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    Scully, M.O., Zubairy, M.S., Agarwal, G.S., Walther, H.: Extracting work from a single heat bath via vanishing quantum coherence. Science 299, 862–864 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    Türkpençe, D., Müstecaplıoğlu, Ö.E.: Quantum fuel with multilevel atomic coherence for ultrahigh specific work in a photonic Carnot engine. Phys. Rev. E 93, 012145 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    Dağ, C., Niedenzu, W., Müstecaplıoğlu, Ö., Kurizki, G.: Multiatom quantum coherences in micromasers as fuel for thermal and nonthermal machines. Entropy 18, 244 (2016)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Niedenzu, W., Gelbwaser-Klimovsky, D., Kofman, A.G., Kurizki, G.: On the operation of machines powered by quantum non-thermal baths. New J. Phys. 18, 083012 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    Niedenzu, W., Mukherjee, V., Ghosh, A., Kofman, A.G., Kurizki, G.: Quantum engine efficiency bound beyond the second law of thermodynamics. Nat. Commun. 9, 165 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    Millen, J., Xuereb, A.: Perspective on quantum thermodynamics. New J. Phys. 18, 011002 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    Allahverdyan, A.E., Nieuwenhuizen, T.M.: Extraction of work from a single thermal bath in the quantum regime. Phys. Rev. Lett. 85, 1799–1802 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    Weimer, H., Henrich, M.J., Rempp, F., Schröder, H., Mahler, G.: Local effective dynamics of quantum systems: a generalized approach to work and heat. EPL (Europhysics Letters) 83, 30008 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    Mahler, G.: Quantum Thermodynamic Processes: Energy and Information Flow at the Nanoscale. Jenny Stanford Publishing, New York (2014)zbMATHCrossRefGoogle Scholar
  23. 23.
    Kosloff, R.: Quantum thermodynamics: a dynamical viewpoint. Entropy 15, 2100–2128 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Vinjanampathy, S., Anders, J.: Quantum thermodynamics. Contemp. Phys. 57, 545–579 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    Goold, J., Huber, M., Riera, A., del Rio, L., Skrzypczyk, P.: The role of quantum information in thermodynamics—a topical review. J. Phys. A Math. Theor. 49, 143001 (2016)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Hardal, A.U.C., Paternostro, M., Müstecaplıoğlu, Ö.E.: Phase-space interference in extensive and nonextensive quantum heat engines. Phys. Rev. E 97, 042127 (2018)ADSCrossRefGoogle Scholar
  27. 27.
    Uzdin, R., Levy, A., Kosloff, R.: Equivalence of quantum heat machines, and quantum-thermodynamic signatures. Phys. Rev. X 5, 031044 (2015)Google Scholar
  28. 28.
    Bauer, M., Brandner, K., Seifert, U.: Optimal performance of periodically driven, stochastic heat engines under limited control. Phys. Rev. E 93, 042112 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    Brandner, K., Seifert, U.: Periodic thermodynamics of open quantum systems. Phys. Rev. E 93, 062134 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    Quan, H.T., Zhang, P., Sun, C.P.: Quantum-classical transition of photon-Carnot engine induced by quantum decoherence. Phys. Rev. E 73, 036122 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    Türkpençe, D., Altintas, F., Paternostro, M., Müstecaplioğlu, Ö.E.: A photonic Carnot engine powered by a spin-star network. EPL (Europhysics Letters) 117, 50002 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    Song, W., Chen, L., Zhu, S.-L.: Sudden death of distillability in qutrit-qutrit systems. Phys. Rev. A 80, 012331 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    Amselem, E., Bourennane, M.: Experimental four-qubit bound entanglement. Nat. Phys. 5, 748–752 (2009)CrossRefGoogle Scholar
  34. 34.
    Lavoie, J., Kaltenbaek, R., Piani, M., Resch, K.J.: Experimental bound entanglement in a four-photon state. Phys. Rev. Lett. 105, 130501 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    Kaneda, F., Shimizu, R., Ishizaka, S., Mitsumori, Y., Kosaka, H., Edamatsu, K.: Experimental activation of bound entanglement. Phys. Rev. Lett. 109, 040501 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    Ferraro, A., Cavalcanti, D., García-Saez, A., Acín, A.: Thermal bound entanglement in macroscopic systems and area law. Phys. Rev. Lett. 100, 080502 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    Tóth, G., Knapp, C., Gühne, O., Briegel, H.J.: Optimal spin squeezing inequalities detect bound entanglement in spin models. Phys. Rev. Lett. 99, 250405 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    Cavalcanti, D., Ferraro, A., García-Saez, A., Acín, A.: Distillable entanglement and area laws in spin and harmonic-oscillator systems. Phys. Rev. A 78, 012335 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    Horodecki, P., Horodecki, M., Horodecki, R.: Bound entanglement can be activated. Phys. Rev. Lett. 82, 1056–1059 (1999)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Horodecki, K., Horodecki, M., Horodecki, P., Oppenheim, J.: Secure key from bound entanglement. Phys. Rev. Lett. 94, 160502 (2005)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Smith, G., Yard, J.: Quantum communication with zero-capacity channels. Science 321, 1812–1815 (2008)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Czekaj, Ł., Przysiężna, A., Horodecki, M., Horodecki, P.: Quantum metrology: heisenberg limit with bound entanglement. Phys. Rev. A 92, 062303 (2015)ADSCrossRefGoogle Scholar
  43. 43.
    Tóth, G., Vértesi, T.: Quantum states with a positive partial transpose are useful for metrology. Phys. Rev. Lett. 120, 020506 (2018)ADSCrossRefGoogle Scholar
  44. 44.
    Smolin, J.A.: Four-party unlockable bound entangled state. Phys. Rev. A 63, 032306 (2001)ADSCrossRefGoogle Scholar
  45. 45.
    Fei, S.-M., Li-Jost, X., Sun, B.-Z.: A class of bound entangled states. Phys. Lett. A 352, 321–325 (2006)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Ali, M.: Distillability sudden death in qutrit-qutrit systems under amplitude damping. J. Phys. B At. Mol. Opt. Phys. 43, 045504 (2010a)ADSCrossRefGoogle Scholar
  47. 47.
    Gallego, R., Eisert, J., Wilming, H.: Thermodynamic work from operational principles. New J. Phys. 18, 103017 (2016)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    Tan, E.Y.-Z., Kaszlikowski, D., Kwek, L.C.: Entanglement witness via symmetric two-body correlations. Phys. Rev. A 93, 012341 (2016)ADSCrossRefGoogle Scholar
  49. 49.
    Augusiak, R., Horodecki, P.: Generalized smolin states and their properties. Phys. Rev. A 74, 012318 (2006)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    Bhatia, R.: Matrix Analysis, Rajendra Bhatia. Springer, Berlin (1997)CrossRefGoogle Scholar
  51. 51.
    Cheng, W.: Comment on: a class of bound entangled states. Phys. Lett. A 364, 517–521 (2007)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Ali, M.: Distillability sudden death in qutrit-qutrit systems under global and multilocal dephasing. Phys. Rev. A 81, 042303 (2010b)ADSCrossRefGoogle Scholar
  53. 53.
    Chen, K., Ling-An, W.: A matrix realignment method for recognizing entanglement. Quantum Info. Comput. 3, 193–202 (2003)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Janzing, D., Wocjan, P., Zeier, R., Geiss, R., Beth, T.: Thermodynamic cost of reliability and low temperatures: tightening Landauer’s principle and the second law. Int. J. Theor. Phys. 39, 2717–2753 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Horodecki, M., Oppenheim, J.: Fundamental limitations for quantum and nanoscale thermodynamics. Nat. Commun. 4, 2059 (2013)ADSCrossRefGoogle Scholar
  56. 56.
    Faist, P., Oppenheim, J., Renner, R.: Gibbs-preserving maps outperform thermal operations in the quantum regime. New J. Phys. 17, 043003 (2015)ADSCrossRefGoogle Scholar
  57. 57.
    Wilming, H., Gallego, R., Eisert, J.: Second law of thermodynamics under control restrictions. Phys. Rev. E 93, 042126 (2016)ADSCrossRefGoogle Scholar
  58. 58.
    Gaudin, M.: Diagonalisation d’une classe d’hamiltoniens de spin. J. Phys. Fr. 37, 1087–1098 (1976)MathSciNetCrossRefGoogle Scholar
  59. 59.
    Goold, J., Paternostro, M., Modi, K.: Nonequilibrium quantum Landauer principle. Phys. Rev. Lett. 114, 060602 (2015)ADSCrossRefGoogle Scholar
  60. 60.
    Reeb, D., Wolf, M.M.: An improved Landauer principle with finite-size corrections. New J. Phys. 16, 103011 (2014)ADSCrossRefGoogle Scholar
  61. 61.
    Esposito, M., Lindenberg, K., Van den Broeck, C.: Entropy production as correlation between system and reservoir. New J. Phys. 12, 013013 (2010)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Pezzutto, M., Paternostro, M., Omar, Y.: Implications of non-Markovian quantum dynamics for the Landauer bound. New J. Phys. 18, 123018 (2016)ADSCrossRefGoogle Scholar
  63. 63.
    Dağ, C.B., Niedenzu, W., Müstecaplıoğlu, Ö.E., G, K.: Temperature control in dissipative cavities by entangled dimers. J. Phys. Chem. C 123, 4035–4043 (2019)CrossRefGoogle Scholar
  64. 64.
    Hardal, A.Ü.C., Müstecaplıoğlu, Ö.E.: Superradiant quantum heat engine. Sci. Rep. 5, 12953 (2015)ADSCrossRefGoogle Scholar
  65. 65.
    Manatuly, A., Niedenzu, W., Román-Ancheyta, R., Çakmak, B., Müstecaplıoğlu, Ö.E., Kurizki, G.: Collectively enhanced thermalization via multiqubit collisions. Phys. Rev. E 99, 042145 (2019)ADSCrossRefGoogle Scholar
  66. 66.
    Nielsen, M.A., Chuang, I.L..: Quantum Computation and quantum information. In: 10th Anniversary Edition, Anniversary edition ed. Cambridge University Press, Cambridge (2011)Google Scholar
  67. 67.
    Scully, M.O., Lamb, W.E.: Quantum theory of an optical maser. I. General theory. Phys. Rev. 159, 208–226 (1967)ADSCrossRefGoogle Scholar
  68. 68.
    Louisell, W.H.: Quantum Statistical Properties of Radiation. Wiley, Hoboken (1990)zbMATHGoogle Scholar
  69. 69.
    Zhong, W., Sun, Z., Ma, J., Wang, X., Nori, F.: Fisher information under decoherence in Bloch representation. Phys. Rev. A 87, 022337 (2013)ADSCrossRefGoogle Scholar
  70. 70.
    Liao, J.-Q., Dong, H., Sun, C.P.: Single-particle machine for quantum thermalization. Phys. Rev. A 81, 052121 (2010)ADSCrossRefGoogle Scholar
  71. 71.
    Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Majer, J., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Approaching unit visibility for control of a superconducting qubit with dispersive readout. Phys. Rev. Lett. 95, 060501 (2005)ADSCrossRefGoogle Scholar
  72. 72.
    Stern, M., Catelani, G., Kubo, Y., Grezes, C., Bienfait, A., Vion, D., Esteve, D., Bertet, P.: Flux qubits with long coherence times for hybrid quantum circuits. Phys. Rev. Lett. 113, 123601 (2014)ADSCrossRefGoogle Scholar
  73. 73.
    Viguié, V., Maruyama, K., Vedral, V.: Work extraction from tripartite entanglement. New J. Phys. 7, 195 (2005)ADSCrossRefGoogle Scholar
  74. 74.
    Alimuddin, M., Guha, T., Parashar, P.: Bound on ergotropic gap for bipartite separable states. Phys. Rev. A 99, 052320 (2019)ADSCrossRefGoogle Scholar
  75. 75.
    Dillenschneider, R., Lutz, E.: Energetics of quantum correlations. EPL Europhys. Lett. 88, 50003 (2009)ADSCrossRefGoogle Scholar
  76. 76.
    Meystre, P., Sargent, M.: Elements of Quantum Optics, 4th edn. Springer, Berlin (2007)zbMATHCrossRefGoogle Scholar
  77. 77.
    Scully, M.O., Zubairy, M.S.: Quantum Optics, 1st edn. Cambridge University Press, Cambridge (1997)CrossRefGoogle Scholar
  78. 78.
    Tavis, M., Cummings, F.W.: Exact solution for an \$N\$-molecule–radiation-field Hamiltonian. Phys. Rev. 170, 379–384 (1968)ADSCrossRefGoogle Scholar
  79. 79.
    Jaynes, E.T., Cummings, F.W.: Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51, 89–109 (1963)CrossRefGoogle Scholar
  80. 80.
    Lostaglio, M., Alhambra, Á.M., Perry, C.: Elementary thermal operations. Quantum 2, 52 (2018)CrossRefGoogle Scholar
  81. 81.
    Schaller, G.: Open Quantum Systems Far from Equilibrium. Lecture Notes in Physics. Springer, Berlin (2014)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsKoc UniversitySariyer, IstanbulTurkey
  2. 2.Physics DepartmentUniversity of MichiganAnn ArborUSA
  3. 3.Institute for International StrategyTokyo International UniversityKawagoeJapan
  4. 4.Department of Information TechnologiesIsik UniversitySile, IstanbulTurkey

Personalised recommendations