Advertisement

Quantum circuit design for several morphological image processing methods

  • Panchi LiEmail author
  • Tong Shi
  • Aiping Lu
  • Bing Wang
Article
  • 87 Downloads

Abstract

Morphological image processing is a relatively mature image processing method in classical image processing. However, in quantum image processing, the related results are still quite scarce. In this paper, we first design the quantum circuits of the two basic operations of dilation and erosion for binary images and grayscale images. On this basis, for binary image, the quantum circuits of three morphological algorithms (noise removal, boundary extraction and skeleton extraction) are designed in detail. For grayscale image, the quantum circuits of three morphological algorithms (i.e., edge detection, image enhancement and texture segmentation) are also designed. In the design of these circuits, the parallelism of quantum computation is considered. The analysis of the circuits complexity shows that all the six morphological algorithms can speed up their classic counterparts.

Keywords

Quantum image processing Quantum morphological dilation Quantum morphological erosion Quantum morphological algorithm design 

Notes

Acknowledgements

This work was supported by the Youth Science Foundation of Northeast Petroleum University (Grant No. 2018QNL-08) and the Guiding Innovation Fund of Northeast Petroleum University (Grant No. 2018YDL-20).

References

  1. 1.
    Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceeding of 35th Annual Symposium Foundations of Computer Science, pp. 124–134. IEEE Computer Society Press, Los Almitos(1994)Google Scholar
  2. 2.
    Grover, L.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on the Theory of Computing, pp. 212–219 (1996)Google Scholar
  3. 3.
    Beach, G., Lomont, C., Cohen, C.: Quantum image processing (QuIP). In: Proceedings of the 32nd IEEE Conference on Applied Imagery and Pattern Recognition, pp. 39–44. Bellingham, WA, USA (2003)Google Scholar
  4. 4.
    Yan, F., Iliyasu, A.M., Le, P.Q.: Quantum image processing: a review of advances in its security technologies. Int. J. Quantum Inf. 15(3), 1730001-(1-18) (2017)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Venegas-Andraca, S., Bose, S.: Storing, processing, and retrieving an image using quantum mechanics. In: Proceedings of SPIE Conference of Quantum Information and Computation, vol. 5105, pp. 134–147 (2003)Google Scholar
  6. 6.
    Latorre, J.: Image Compression and Entanglement (2005). arXiv:quant-ph/0510031
  7. 7.
    Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Yuan, S., Mao, X., Xue, Y., Chen, L., Xiong, Q., Compare, A.: SQR: a simple quantum representation of infrared images. Quantum Inf. Process. 13(6), 1353–1379 (2014)ADSMathSciNetzbMATHGoogle Scholar
  9. 9.
    Sun, B., Iliyasu, A., Yan, F., Dong, F., Hirota, K.: An RGB multi-channel representation for images on quantum computers. J. Adv. Comput. Intell. Intell. Info. 17(3), 404–417 (2013)Google Scholar
  10. 10.
    Sun, B., Le, P., Iliyasu, A., Yan, F., Garcia, J., Dong, F., Hirota, K.: Amulti-channel representation for images on quantum computers using the RGB color space. In: IEEE 7th International Symposium on Intelligent Signal Processing (WISP), pp. 1–6 (2011)Google Scholar
  11. 11.
    Zhang, Y., Lu, K., Gao, Y., et al.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)ADSMathSciNetzbMATHGoogle Scholar
  12. 12.
    Zhang, W.W., Gao, F., Liu, B., et al.: A watermark strategy for quantum images based on quantum Fourier transformation. Quantum Inf. Process. 12(4), 793–803 (2013)ADSMathSciNetzbMATHGoogle Scholar
  13. 13.
    Zhang, W.W., Gao, F., Liu, B., et al.: A quantum watermark protocol. Int. J. Theor. Phys. 52(2), 504–513 (2013)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Jiang, N., Wu, W.Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13(5), 1223–1236 (2014)ADSMathSciNetzbMATHGoogle Scholar
  15. 15.
    Jiang, N., Wang, L.: Analysis and improvement of the quantum Arnold image scrambling. Quantum Inf. Process. 13(7), 1545–1551 (2014)ADSMathSciNetzbMATHGoogle Scholar
  16. 16.
    Jiang, N., Wang, L., Wu, W.Y.: Quantum Hilbert image scrambling. Int. J. Theor. Phys. 53(7), 2463–2484 (2014)zbMATHGoogle Scholar
  17. 17.
    Zhou, R.G., Sun, Y.J., Fan, P.: Quantum image Gray-code and bit-plane scrambling. Quantum Inf. Process. 14(5), 1717–1734 (2015)ADSMathSciNetzbMATHGoogle Scholar
  18. 18.
    Zhou, N.R., Hua, T.X., Gong, L.H., et al.: Quantum image encryption based on generalized Arnold transform and double random-phase encoding. Quantum Inf. Process. 14(4), 1193–1213 (2015)ADSMathSciNetzbMATHGoogle Scholar
  19. 19.
    Zhou, N.R., Chen, W.W., Yan, X.Y., et al.: Bit-level quantum color image encryption scheme with quantum cross-exchange operation and hyper-chaotic system. Quantum Inf. Process. 17(6), 137 (2018)ADSMathSciNetzbMATHGoogle Scholar
  20. 20.
    Gong, L.H., He, X.T., Cheng, S., et al.: Quantum image encryption algorithm based on quantum image XOR operations. Int. J. Theor. Phys. 55(7), 3234–3250 (2016)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Wang, S., Song, X.H., Niu, X.M.: A novel encryption algorithm for quantum images based on quantum wavelet transform and diffusion. Intell. Data Anal. Appl. 2, 243–250 (2014)Google Scholar
  22. 22.
    Song, X.H., Wang, S., Ahmed, A., et al.: Quantum image encryption based on restricted geometric and color transformations. Quantum Inf. Process. 13(8), 1765–1787 (2014)ADSMathSciNetzbMATHGoogle Scholar
  23. 23.
    Zhou, R.G., Wu, Q., Zhang, M.Q., et al.: Quantum image encryption and decryption algorithms based on quantum image geometric transformations. Int. J. Theor. Phys. 52(6), 1802–1817 (2013)MathSciNetGoogle Scholar
  24. 24.
    Akhshani, A., Akhavan, A., Lim, S.C., et al.: An image encryption scheme based on quantum logistic map. Commun. Nonlinear Sci. Numer. Simul. 17(12), 4653–4661 (2012)ADSMathSciNetzbMATHGoogle Scholar
  25. 25.
    Yang, Y.G., Xia, J., Jia, X., et al.: Novel image encryption/decryption based on quantum Fourier transform and double phase encoding. Quantum Inf. Process. 12(11), 3477–3493 (2013)ADSMathSciNetzbMATHGoogle Scholar
  26. 26.
    Li, P.C., Zhao, Y.: A simple encryption algorithm for quantum color image. Int. J. Theor. Phys. 56(6), 1961–1982 (2017)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Yan, F., Iliyasu, A., Salvador, E., et al.: Video encryption and decryption on quantum computers. Int. J. Theor. Phys. 54(8), 2893–2904 (2015)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Iliyasu, A., Le, P.Q., Dong, F.Y., et al.: Watermarking and authentication of quantum image based on restricted geometric transformations. Inf. Sci. 186(1), 126–149 (2012)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Yan, F., Iliyasu, A., Sun, B., et al.: A duple watermarking strategy for multi-channel quantum images. Quantum Inf. Process. 14(5), 1675–1692 (2015)ADSMathSciNetzbMATHGoogle Scholar
  30. 30.
    Yang, Y.G., Jia, X., Xu, P., et al.: Analysis and improvement of the watermark strategy for quantum image based on quantum Fourier transform. Quantum Inf. Process. 12(8), 2765–2769 (2013)ADSMathSciNetzbMATHGoogle Scholar
  31. 31.
    Song, X.H., Wang, S., Liu, S., et al.: A dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inf. Process. 12(12), 3689–3706 (2013)ADSMathSciNetzbMATHGoogle Scholar
  32. 32.
    Song, X.H., Wang, S., Niu, X.M., et al.: Dynamic watermarking scheme for quantum images based on Hadamard transform. Multimedia Syst. 20(4), 379–388 (2014)Google Scholar
  33. 33.
    Li, P.C., Xiao, H., Li, B.X.: Quantum representation and watermark strategy for color images based on the controlled rotation of qubits. Quantum Inf. Process. 15(11), 4415–4440 (2016)ADSMathSciNetzbMATHGoogle Scholar
  34. 34.
    Shahrokh, H., Mosayeb, N.: A novel LSB based quantum watermarking. Int. J. Theor. Phys. 55(10), 4205–4218 (2016)zbMATHGoogle Scholar
  35. 35.
    Miyake, S., Nakamae, K.: A quantum watermarking scheme using simple and small-scale quantum circuits. Quantum Inf. Process. 15(5), 1849–1864 (2016)ADSMathSciNetzbMATHGoogle Scholar
  36. 36.
    Li, P.C., Zhao, Y., Xiao, H., et al.: An improved quantum watermarking scheme using small-scale quantum circuits and color scrambling. Quantum Inf. Process. 16(5), 127 (2017)ADSzbMATHGoogle Scholar
  37. 37.
    Zhou, R.G., Hu, W.W., Fan, P.: Quantum watermarking scheme through Arnold scrambling and LSB steganography. Quantum Inf. Process. 16(9), 212 (2017)ADSMathSciNetzbMATHGoogle Scholar
  38. 38.
    Mosayeb, N., Shahrokh, H., Masoud, B., et al.: A new secure quantum watermarking scheme. Optik 139(6), 77–86 (2017)Google Scholar
  39. 39.
    Qu, Z.G., Cheng, Z.W., Luo, M.X., et al.: A robust quantum watermark algorithm based on quantum log-polar images. Int. J. Theor. Phys. 56(11), 3460–3476 (2017)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Jiang, N., Wang, L.: A novel strategy for quantum image steganography based on Moire pattern. Int. J. Theor. Phys. 54(3), 1021–1032 (2015)zbMATHGoogle Scholar
  41. 41.
    Jiang, N., Zhao, N., Wang, L.: LSB based quantum image steganography algorithm. Int. J. Theor. Phys. 55(1), 107–123 (2016)zbMATHGoogle Scholar
  42. 42.
    Sang, J.Z., Wang, S., Li, Q.: Least significant qubit algorithm for quantum images. Quantum Inf. Process. 15(11), 4441–4460 (2016)ADSMathSciNetzbMATHGoogle Scholar
  43. 43.
    Wang, S., Sang, J.Z., Song, X.H., et al.: Least significant qubit (LSQb) information hiding algorithm for quantum image. Measurement 73, 352–359 (2015)Google Scholar
  44. 44.
    Mosayeb, N., Monireh, H.: Quantum red–green–blue image steganography. Int. J. Quantum Inf. 15(5), 1750039 (2017)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Shahrokh, H., Ehsan, F.: A novel quantum LSB-based steganography method using the Gray code for colored quantum images. Quantum Inf. Process. 16(10), 242 (2017)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Li, P.C., Liu, X.D.: A novel quantum steganography scheme for color images. Int. J. Quantum Inf. 16(2), 1850020 (2018)zbMATHGoogle Scholar
  47. 47.
    Li, P.C., Lu, A.P.: LSB-based steganography using reflected Gray code for color quantum images. Int. J. Theor. Phys. 57(5), 1516–1548 (2018)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Qu, Z.G., Chen, S.Y., Ji, S.: A novel quantum video steganography protocol with large payload based on MCQI quantum video. Int. J. Theor. Phys. 56(2), 3543–3561 (2017)zbMATHGoogle Scholar
  49. 49.
    Iliyasu, A.M., Le, P.Q., Dong, F.Y., et al.: A framework for representing and producing movies on quantum computers. Int. J. Quantum Inf. 9(6), 1459–1497 (2011)zbMATHGoogle Scholar
  50. 50.
    Yan, F., Iliyasu, A.M., Guo, Y.M., Yang, H.M.: Flexible representation and manipulation of audio signals on quantum computers. Theor. Comput. Sci. 752, 71–85 (2018)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Jiang, N., Dang, Y., Wang, J.: Quantum image matching. Quantum Inf. Process. 15(9), 3543–3572 (2016)ADSMathSciNetzbMATHGoogle Scholar
  52. 52.
    Jiang, N., Dang, Y., Zhao, N.: Quantum image location. Int. J. Theor. Phys. 55(10), 4501–4512 (2016)zbMATHGoogle Scholar
  53. 53.
    Le, P.Q., Iliyasuy, A.M., Dong, F., et al.: Fast geometric transformations on quantum images. IAENG Int. J. Appl. Math. 40(3), 113–123 (2010)MathSciNetGoogle Scholar
  54. 54.
    Jiang, N., Wu, W.Y., Wang, L., et al.: Quantum image pseudo color coding based on the density-stratified method. Quantum Inf. Process. 14(5), 1735–1755 (2015)ADSMathSciNetzbMATHGoogle Scholar
  55. 55.
    Zhang, Y., Lu, K., Xu, K., et al.: Local feature point extraction for quantum images. Quantum Inf. Process. 14(5), 1573–1588 (2015)ADSMathSciNetzbMATHGoogle Scholar
  56. 56.
    Simona, C., Vasile, I.M.: Image segmentation on a quantum computer. Quantum Inf. Process. 14(5), 1693–1715 (2015)MathSciNetzbMATHGoogle Scholar
  57. 57.
    Yuan, S.Z., Mao, X., Li, T., et al.: Quantum morphology operations based on quantum representation model. Quantum Inf. Process. 14(5), 1625–1645 (2015)ADSMathSciNetzbMATHGoogle Scholar
  58. 58.
    Zhou, R.G., Chang, Z.B., Fan, P., et al.: Quantum image morphology processing based on quantum set operation. Int. J. Theor. Phys. 54(6), 1974–1985 (2015)zbMATHGoogle Scholar
  59. 59.
    Fan, P., Zhou, R.G., Hu, W.W., et al.: Quantum circuit realization of morphological gradient for quantum grayscale image. Int. J. Theor. Phys. 58(2), 415–435 (2019)zbMATHGoogle Scholar
  60. 60.
    Wang, D., Liu, Z., Zhu, W., et al.: Design of quantum comparator based on extended general Toffoli gates with multiple targets. Comput. Sci. 39(9), 302–306 (2012)Google Scholar
  61. 61.
    Vefral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54(1), 147–153 (1996)ADSMathSciNetGoogle Scholar
  62. 62.
    Adriano, B., Charles, H.B., Richard, C., et al.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457–3467 (1995)Google Scholar
  63. 63.
    William, N.N., Song, X.Y., Yang, G.W., et al.: Optimal synthesis of multiple output boolean functions using a set of quantum gates by symbolic reachability analysis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25(9), 1652–1663 (2006)Google Scholar
  64. 64.
    Himanshu, T., Nagarajan R.: Design of efficient reversible binary subtractors based on a new reversible gate. In: 2009 IEEE Computer Society Annual Symposium on VLSI, pp. 229–234. IEEE Computer Society Press, Tampa, Florida, USA (2009)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Computer and Information TechnologyNortheast Petroleum UniversityDaqingChina

Personalised recommendations