Preservation of entanglement and quantum correlations next to periodic plasmonic nanostructures

  • Natalia Domenikou
  • Nikos Iliopoulos
  • Andreas F. Terzis
  • Vassilios Yannopapas
  • Emmanuel PaspalakisEmail author


We study quantum correlations dynamics of two identical V-type quantum systems initially prepared in an extended Werner-like state, where each one independently interacts with a plasmonic nanostructure. Each V-type system can be decomposed as a two-level system with an additional third external level acting as an “umbrella level.” As the plasmonic nanostructure, we use a two-dimensional array of metal-coated dielectric nanoparticles. For the calculations, we combine quantum dynamics calculations using the density matrix equations and classical electromagnetic calculations. In order to describe the entanglement, we use the measure of entanglement of formation, while we use quantum discord to describe the total quantum correlations of our composite system. We find that the presence of the plasmonic nanostructure leads to high suppression of spontaneous emission rates along with a high degree of quantum interference. These phenomena affect the evolution of both entanglement and quantum discord, while they significantly prolong their dynamics.


Quantum correlations Quantum discord Entanglement of formation V-type quantum system Periodic plasmonic nanostructure Quantum interference 



  1. 1.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)ADSMathSciNetzbMATHGoogle Scholar
  2. 2.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  3. 3.
    Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)zbMATHGoogle Scholar
  4. 4.
    Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)ADSGoogle Scholar
  5. 5.
    Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323, 598 (2009)ADSMathSciNetzbMATHGoogle Scholar
  6. 6.
    Franco, R.Lo, Bellomo, B., Maniscalco, S., Compagno, G.: Dynamics of quantum correlations in two-qubit systems within non-Markovian environments. Int. J. Mod. Phys. B 27, 1345053 (2013)ADSMathSciNetzbMATHGoogle Scholar
  7. 7.
    Horodecki, M., Horodecki, P., Horodecki, R.M., Oppenheim, J., Sen(De), A., Sen, U., Synak-Radtke, B.: Local versus nonlocal information in quantum-information theory: formalism and phenomena. Phys. Rev. A 71, 062307 (2005)ADSzbMATHGoogle Scholar
  8. 8.
    Bennett, C.H., DiVincenzo, D.P., Fuchs, C.A., Mor, T., Rains, E., Shor, P.W., Smolin, J.A., Wootters, W.K.: Quantum nonlocality without entanglement. Phys. Rev. A 59, 1070 (1999)ADSMathSciNetGoogle Scholar
  9. 9.
    Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)ADSzbMATHGoogle Scholar
  10. 10.
    Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)ADSMathSciNetzbMATHGoogle Scholar
  11. 11.
    Wang, B., Xu, Zhen-Yu., Chen, Ze-Qian, Feng, M.: Non-Markovian effect on the quantum discord. Phys. Rev. A 81, 014101 (2010)ADSGoogle Scholar
  12. 12.
    Fanchini, F.F., Werlang, T., Brasil, C.A., Arruda, L.G.E., Caldeira, A.O.: Non-Markovian dynamics of quantum discord. Phys. Rev. A 81, 052107 (2010)ADSGoogle Scholar
  13. 13.
    Zhang, P., You, B., Cen, L.-X.: Long-lived quantum coherence of two-level spontaneous emission models within structured environments. Optics Lett. 38, 3650 (2013)ADSGoogle Scholar
  14. 14.
    Wang, J., Zhang, H., Zhang, Y., Zhang, L., Huang, T., Sun, S., Zhang, H.-Z.: Dynamics of quantum discord in photonic crystals. Opt. Commun. 285, 2961 (2012)ADSGoogle Scholar
  15. 15.
    Iliopoulos, N., Terzis, A.F., Yannopapas, V., Paspalakis, E.: Two-qubit correlations via a periodic plasmonic nanostructure. Ann. Phys. 365, 38 (2016)ADSMathSciNetzbMATHGoogle Scholar
  16. 16.
    Gonzalez-Tudela, A., Martin-Cano, D., Moreno, E., Martin- Moreno, L., Tejedor, C., Garcia-Vidal, F.J.: Entanglement of two qubits mediated by one-dimensional plasmonic waveguides. Phys. Rev. Lett. 106, 020501 (2011)ADSGoogle Scholar
  17. 17.
    Martin-Cano, D., Gonzalez-Tudela, A., Martin-Moreno, L., Garcia-Vidal, F.J., Tejedor, C., Moreno, E.: Dissipation-driven generation of two-qubit entanglement mediated by plasmonic waveguides. Phys. Rev. B 84, 235306 (2011)ADSGoogle Scholar
  18. 18.
    Xu, J., Al-Amri, M., Yang, Y., Zhu, S.-Y., Zubairy, M.S.: Entanglement generation between two atoms via surface modes. Phys. Rev. A 84, 032334 (2011)ADSGoogle Scholar
  19. 19.
    He, Y., Zhu, K.-D.: Strong coupling among semiconductor quantum dots induced by a metal nanoparticle. Nanosc. Res. Lett. 7, 95 (2012)ADSGoogle Scholar
  20. 20.
    Gonzalez-Tudela, A., Martin-Cano, D., Moreno, E., Martin-Moreno, L., Garcia-Vidal, F.J., Tejedor, C.: Exploring qubit-qubit entanglement mediated by one-dimensional plasmonic nanowaveguides. Phys. Stat. Solidi C 9, 1303 (2012)Google Scholar
  21. 21.
    Susa, C.E., Reina, J.H., Sanchez-Soto, L.L.: Correlations in emitters coupled to plasmonic waveguides. J. Phys. B: At. Mol. Opt. Phys. 46, 224022 (2013)ADSGoogle Scholar
  22. 22.
    He, Q.-L., Xu, J.-B., Yao, D.-X.: Mediating and inducing quantum correlation between two separated qubits by one-dimensional plasmonic waveguide. Quant. Inf. Proc. 12, 3023 (2013)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Liu, S.-P., Li, J.-H., Yu, R., Wu, Y.: Generation of long-time maximum entanglement between two dipole emitters via a hybrid photonic-plasmonic resonator. Phys. Rev. A 87, 042306 (2013)ADSGoogle Scholar
  24. 24.
    Lee, C., Tame, M., Noh, C., Lim, J., Maier, S.A., Lee, J., Angelakis, D.G.: Robust-to-loss entanglement generation using a quantum plasmonic nanoparticle array. New J. Phys. 15, 083017 (2013)ADSGoogle Scholar
  25. 25.
    Susa, C.E., Reina, J.H., Hildner, R.: Plasmon-assisted quantum control of distant emitters. Phys. Lett. A 378, 2371 (2014)ADSzbMATHGoogle Scholar
  26. 26.
    Hou, J., Slowik, K., Lederer, F., Rockstuhl, C.: Dissipation-driven entanglement between qubits mediated by plasmonic nanoantennas. Phys. Rev. B 89, 235413 (2014)ADSGoogle Scholar
  27. 27.
    Nerkararyan, K.V., Bozhevolnyi, S.I.: Entanglement of two qubits mediated by a localized surface plasmon. Phys. Rev. B 92, 045410 (2015)ADSGoogle Scholar
  28. 28.
    Gangaraj, S.A.Hassani, Nemilentsau, A., Hanson, G.W., Hughes, S.: Transient and steady-state entanglement mediated by three-dimensional plasmonic waveguides. Opt. Express 23, 22330 (2015)ADSGoogle Scholar
  29. 29.
    Yang, W.-L., An, J.-H., Zhang, C.-J., Chen, C.-Y., Oh, C.H.: Dynamics of quantum correlation between separated nitrogen-vacancy centers embedded in plasmonic waveguide. Sci. Rep. 5, 15513 (2015)ADSGoogle Scholar
  30. 30.
    Otten, M., Shah, R.A., Scherer, N.F., Min, M., Pelton, M., Gray, S.K.: Entanglement of two, three, or four plasmonically coupled quantum dots. Phys. Rev. B 92, 125432 (2015)ADSGoogle Scholar
  31. 31.
    Zeng, X., Liao, Z., Al-Amri, M., Zubairy, M.S.: Controllable waveguide via dielectric cylinder covered with graphene: tunable entanglement. Europhys. Lett. 115, 14002 (2016)ADSGoogle Scholar
  32. 32.
    Hu, Z.-D., Liang, X., Wang, J., Zhang, Y.: Quantum coherence and quantum correlation of two qubits mediated by a one-dimensional plasmonic waveguide. Opt. Express 24, 10817 (2016)ADSGoogle Scholar
  33. 33.
    Otten, M., Larson, J., Min, M., Wild, S.M., Pelton, M., Gray, S.K.: Origins and optimization of entanglement in plasmonically coupled quantum dots. Phys. Rev. A 94, 022312 (2016)ADSGoogle Scholar
  34. 34.
    Iliopoulos, N., Terzis, A.F., Yannopapas, V., Paspalakis, E.: Prolonging entanglement dynamics near periodic plasmonic nanostructures. Phys. Rev. B 96, 075405 (2017)ADSGoogle Scholar
  35. 35.
    Dumitrescu, E., Lawrie, B.: Antibunching dynamics of plasmonically mediated entanglement generation. Phys. Rev. A 96, 053826 (2017)ADSGoogle Scholar
  36. 36.
    Hensen, M., Heilpern, T., Gray, S.K., Pfeiffer, W.: Strong coupling and entanglement of quantum emitters embedded in a nanoantenna-enhanced plasmonic cavity. ACS Photon. 5, 240 (2018)Google Scholar
  37. 37.
    Iliopoulos, N., Thanopulos, I., Yannopapas, V., Paspalakis, E.: Counter-rotating effects and entanglement dynamics in strongly coupled quantum-emitter-metallic-nanoparticle structures. Phys. Rev. B 97, 115402 (2018)ADSGoogle Scholar
  38. 38.
    Zhang, F., Ren, J.J., Duan, X.K., Chen, Z., Gong, Q.H., Gu, Y.: Evanescent-field-modulated two-qubit entanglement in an emitters-plasmon coupled system. J. Phys. Condens. Matt. 30, 305302 (2018)Google Scholar
  39. 39.
    Iliopoulos, N., Thanopulos, I., Yannopapas, V., Paspalakis, E.: Quantum correlations in quantum emitters strongly coupled with metallic nanoparticles. Quantum Inf. Proc. 18, 110 (2019)ADSMathSciNetzbMATHGoogle Scholar
  40. 40.
    Yannopapas, V., Paspalakis, E., Vitanov, N.V.: Plasmon-induced enhancement of quantum interference near metallic nanostructures. Phys. Rev. Lett. 103, 063602 (2009)ADSGoogle Scholar
  41. 41.
    Evangelou, S., Yannopapas, V., Paspalakis, E.: Modifying free-space spontaneous emission near a plasmonic nanostructure. Phys. Rev. A 83, 023819 (2011)ADSGoogle Scholar
  42. 42.
    Evangelou, S., Yannopapas, V., Paspalakis, E.: Simulating quantum interference in spontaneous decay near plasmonic nanostructures: population dynamics. Phys. Rev. A 83, 055805 (2011)ADSGoogle Scholar
  43. 43.
    Evangelou, S., Yannopapas, V., Paspalakis, E.: Transparency and slow light in a four-level quantum system near a plasmonic nanostructure. Phys. Rev. A 86, 053811 (2012)ADSGoogle Scholar
  44. 44.
    Carreño, F., Antón, M.A., Yannopapas, V., Paspalakis, E.: Control of the absorption of a four-level quantum system near a plasmonic nanostructure. Phys. Rev. B 95, 195410 (2017)ADSGoogle Scholar
  45. 45.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)ADSzbMATHGoogle Scholar
  46. 46.
    Das, S., Agarwal, G.S.: Protecting bipartite entanglement by quantum interferences. Phys. Rev. A 81, 052341 (2010)ADSGoogle Scholar
  47. 47.
    Nair, A.N., Arun, R.: Comment on “Protecting bipartite entanglement by quantum interferences”. Phys. Rev. A 97, 036301 (2018)ADSGoogle Scholar
  48. 48.
    Bellomo, B., Franco, R.Lo, Compagno, G.: Non-Markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99, 160502 (2007)ADSGoogle Scholar
  49. 49.
    Bellomo, B., Franco, R.Lo, Maniscalco, S., Compagno, G.: Entanglement trapping in structured environments. Phys. Rev. A 78, 060302 (2008)ADSGoogle Scholar
  50. 50.
    Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105 (2010)ADSGoogle Scholar
  51. 51.
    Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)ADSGoogle Scholar
  52. 52.
    Bellomo, B., Franco, R.Lo, Maniscalco, S., Compagno, G.: Entanglement dynamics of two independent qubits in environments with and without memory. Phys. Rev. A 77, 032342 (2008)ADSGoogle Scholar
  53. 53.
    Agarwal, G.S.: Anisotropic vacuum-induced interference in decay channels. Phys. Rev. Lett. 84, 5500 (2000)ADSGoogle Scholar
  54. 54.
    Kiffner, M., Macovei, M., Evers, J., Keitel, C.H.: Vacuum-Induced Processes in Multilevel Atoms in “Progress in Optics” edited by E. Wolf (Elsevier, Amsterdam, 2010) Vol. 55, p. 85Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Natalia Domenikou
    • 1
  • Nikos Iliopoulos
    • 1
  • Andreas F. Terzis
    • 2
  • Vassilios Yannopapas
    • 3
  • Emmanuel Paspalakis
    • 1
    Email author
  1. 1.Materials Science Department, School of Natural SciencesUniversity of PatrasPatrasGreece
  2. 2.Department of Physics, School of Natural SciencesUniversity of PatrasPatrasGreece
  3. 3.Department of PhysicsNational Technical University of AthensAthensGreece

Personalised recommendations