Advertisement

Optimal fidelity for quantum teleportation protocol of an arbitrary qubit state affected by amplitude-damping noise: causes and results

  • Nguyen Van HopEmail author
Article
  • 128 Downloads

Abstract

The improvement of the average fidelity of the quantum teleportation protocol of an arbitrary qubit state has been researched. The initial quantum channel is chosen as the non-maximally entangled state, and this state depends on a free parameter. One qubit of this quantum channel is influenced by the amplitude-damping noise environment in the Markovian regime or the non-Markovian regime. The average fidelity is enhanced efficiently through the appropriately selected free parameter of the initial quantum channel. The optimization could not be attributed to the probability as well as the noise environment that makes the initial quantum channel becomes the closest quantum channel to the maximally entangled one. Our study shows that the average fidelity is enhanced as the quantum entanglement of the initial quantum channel is harmoniously redistributed into the entanglement of quantum channel influenced by the noise environment and the entanglement between each of the qubits in this quantum channel and the noise environment.

Keywords

Initial quantum channel Free parameter Amplitude-damping noise environment Optimal average fidelity 

Notes

Acknowledgements

This work is supported by the Vietnam Ministry of Education and Training under Grant Number B2018-SPH-48. We would like to thank Nguyen Ba An for his interests in the manuscript.

References

  1. 1.
    Bennett, B.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetzbMATHGoogle Scholar
  2. 2.
    Vaidman, L.: Teleportation of quantum states. Phys. Rev. A 49, 1473 (1994)ADSGoogle Scholar
  3. 3.
    Braunstein, S.L., Kimble, H.J.: Teleportation of continuous quantum variables. Phys. Rev. Lett. 80, 869 (1998)ADSGoogle Scholar
  4. 4.
    Adesso, G., Illuminati, F.: Equivalence between entanglement and the optimal fidelity of continuous variable teleportation. Phys. Rev. Lett. 95, 150503 (2005)ADSGoogle Scholar
  5. 5.
    Dell’Anno, F., Siena, S.D., Albano, L., Illuminati, F.: Continuous-variable quantum teleportation with non-Gaussian resources. Phys. Rev. A 76, 022301 (2007)ADSGoogle Scholar
  6. 6.
    Adhikari, S., Majumdar, A.S., Nayak, N.: Teleportation of two-mode squeezed states. Phys. Rev. A 77, 012337 (2008)ADSGoogle Scholar
  7. 7.
    Adhikari, S., Majumdar, A.S., Roy, S., Ghosh, B., Nayak, N.: Teleportation via maximally and non-maximally entangled mixed states. Quantum Inf. Comput. 10, 0398 (2010)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Ganguly, N., Adhikari, S., Majumdar, A.S., Chatterjee, J.: Entanglement witness operator for quantum teleportation. Phys. Rev. Lett. 107, 270501 (2011)Google Scholar
  9. 9.
    Adhikari, S., Majumdar, A.S., Home, D., Pan, A.K., Joshi, P.: Quantum teleportation using non-orthogonal entangled channels. Phys. Scr. 85, 045001 (2012)ADSzbMATHGoogle Scholar
  10. 10.
    Sazim, Sk, Adhikari, S., Banerjee, S., Pramanik, T.: Quantification of entanglement of teleportation in arbitrary dimensions. Quantum Inf. Process 13, 863 (2014)ADSMathSciNetzbMATHGoogle Scholar
  11. 11.
    Liu, D., Huang, Z., Guo, X.: Probabilistic teleportation via quantum channel with partial information. Entropy 17(6), 3621 (2015)ADSMathSciNetGoogle Scholar
  12. 12.
    Kiktenko, E.O., Popov, A.A., Fedorov, A.K.: Bidirectional imperfect quantum teleportation with a single Bell state. Phys. Rev. A 93, 062305 (2016)ADSGoogle Scholar
  13. 13.
    Cavalcanti, D., Skrzypczyk, P., Šupić, I.: All entangled states can demonstrate nonclassical teleportation. Phys. Rev. Lett. 119, 110501 (2017)ADSGoogle Scholar
  14. 14.
    Jeongho, B., Junghee, R., Kaszlikowski, D.: Fidelity deviation in quantum teleportation. J. Phys. A Math. Theor. 51, 135302 (2018)ADSMathSciNetzbMATHGoogle Scholar
  15. 15.
    Quan, Q., Zhao, M.J., Fei, S.M., Fan, H., Yang, W.L., Long, G.L.: Two-copy quantum teleportation. Sci. Rep. 8, 13960 (2018)ADSGoogle Scholar
  16. 16.
    Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575 (1997)ADSzbMATHGoogle Scholar
  17. 17.
    Boschi, D., Branca, S., Martini, F.D., Hardy, L., Popescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121 (1998)ADSMathSciNetzbMATHGoogle Scholar
  18. 18.
    Furusawa, A., Sørensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S.: Unconditional quantum teleportation. Science 282, 706 (1998)ADSGoogle Scholar
  19. 19.
    Zhang, T.C., Goh, K.W., Chou, C.W., Lodahl, P., Kimble, H.J.: Quantum teleportation of light beams. Phys. Rev. A 67, 033802 (2003)ADSGoogle Scholar
  20. 20.
    Takei, N., Yonezawa, H., Aoki, T., Furusawa, A.: High-fidelity teleportation beyond the no-cloning limit and entanglement swapping for continuous variables. Phys. Rev. Lett. 94, 220502 (2005)ADSGoogle Scholar
  21. 21.
    DiGuglielmo, J., Hage, B., Franzen, A., Fiurášek, J., Schnabel, R.: Experimental characterization of Gaussian quantum-communication channels. Phys. Rev. A 76, 012323 (2007)ADSGoogle Scholar
  22. 22.
    Xiao, S.M., Herbst, T., Scheidl, T., Wang, D., Kropatschek, S., Naylor, W., Wittmann, B., Mech, A., Kofler, J., Anisimova, E., Makarov, V., Jennewein, T., Ursin, R., Zeilinger, A.: Quantum teleportation over 143 kilometres using active feed-forward. Nature 489, 269 (2012)ADSGoogle Scholar
  23. 23.
    Wang, X.L., Cai, X.D., Su, Z.E., Chen, M.C., Wu, D., Li, L., Liu, N.L., Lu, C.Y., Pan, J.W.: Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516 (2015)ADSGoogle Scholar
  24. 24.
    Valivarthi, R., Puigibert, MliG, Zhou, Q., Aguilar, G.H., Verma, V.B., Marsili, F., Shaw, M.D., Nam, S.W., Oblak, D., Tittel, W.: Quantum teleportation across a metropolitan fibre network. Nat. Photonics 10, 676 (2016)ADSGoogle Scholar
  25. 25.
    Lee, J., Min, H., Oh, S.D.: Multipartite entanglement for entanglement teleportation. Phys. Rev. A 66, 052318 (2002)ADSGoogle Scholar
  26. 26.
    Rigolin, G.: Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement. Phys. Rev. A 71, 032303 (2005)ADSGoogle Scholar
  27. 27.
    Zhang, Q., Goebel, A., Wagenknecht, C., Chen, Y.A., Zhao, B., Yang, T., Mair, A., Schmiedmayer, J., Pan, J.W.: Experimental quantum teleportation of a two-qubit composite system. Nat. Phys. 2, 678 (2006)Google Scholar
  28. 28.
    Zhao, M.J., Li, Z.G., Jost, X.L., Fei, S.M.: Multiqubit quantum teleportation. J. Phys. A Math. Theor. 45, 405303 (2012)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Zhao, H.P., Jian, Z., Liu, X.J., Kuang, L.M.: Construction of general quantum channel for quantum teleportation. Quantum Inf. Process. 12, 2803 (2013)ADSMathSciNetzbMATHGoogle Scholar
  30. 30.
    Li, Y.H., Li, X.L., Nie, L.P., Sang, M.H.: Quantum teleportation of three and four-qubit state using multi-qubit cluster states. Int. J. Theor. Phys. 55, 1820 (2016)zbMATHGoogle Scholar
  31. 31.
    Cai, T., Jiang, M.: Improving the teleportation scheme of three-qubit state with a four-qubit quantum channel. Int. J. Theor. Phys. 57, 131 (2018)ADSzbMATHGoogle Scholar
  32. 32.
    Popescu, S.: Bell’s inequalities versus teleportation: what is nonlocality? Phys. Rev. Lett. 72, 797 (1994)ADSMathSciNetzbMATHGoogle Scholar
  33. 33.
    Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)ADSMathSciNetzbMATHGoogle Scholar
  34. 34.
    Ishizaka, S.: Quantum channel locally interacting with environment. Phys. Rev. A 63, 034301 (2001)ADSGoogle Scholar
  35. 35.
    Oh, S., Lee, S., Lee, H.W.: Fidelity of quantum teleportation through noisy channels. Phys. Rev. A 66, 022316 (2002)ADSMathSciNetGoogle Scholar
  36. 36.
    Horodecki, M., Horodecki, P., Horodecki, R.: General teleportation channel, singlet fraction, and quasi-distillation. Phys. Rev. A 60, 1888 (1999)ADSMathSciNetzbMATHGoogle Scholar
  37. 37.
    Yeo, Y., Kho, Z.W., Wang, L.: Effects of Pauli channels and noisy quantum operations on standard teleportation. EPL 86(4), 40009 (2009)ADSGoogle Scholar
  38. 38.
    Hu, M.L.: Teleportation of the one-qubit state in decoherence environments. J. Phys. B At. Mol. Opt. Phys. 44, 025502 (2011)ADSGoogle Scholar
  39. 39.
    Hu, M.L.: Environment-induced decay of teleportation fidelity of the one-qubit state. Phys. Lett. A 375, 2140 (2011)ADSGoogle Scholar
  40. 40.
    Hu, M.L.: Robustness of Greenberger–Horne–Zeilinger and W states for teleportation in external environments. Phys. Lett. A 375, 922 (2011)ADSGoogle Scholar
  41. 41.
    Man, Z.X., Xia, Y.J.: Quantum teleportation in a dissipative environment. Quantum Inf. Process 11(6), 1911 (2012)ADSMathSciNetzbMATHGoogle Scholar
  42. 42.
    Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)ADSGoogle Scholar
  43. 43.
    Pan, J.W., Simon, C., Brukner, C., Zeilinger, A.: Entanglement purification for quantum communication. Nature 410, 1067 (2001)ADSGoogle Scholar
  44. 44.
    Romero, J.L., Roa, L., Retamal, J.C., Saavedra, C.: Entanglement purification in cavity QED using local operations. Phys. Rev. A 65, 052319 (2002)ADSGoogle Scholar
  45. 45.
    Rozpedek, F., Schiet, T., Thinh, L.P., Elkouss, D., Doherty, A.C., Wehner, S.: Optimizing practical entanglement distillation. Phys. Rev. A 97, 062333 (2018)ADSGoogle Scholar
  46. 46.
    Pramanik, T., Majumdar, A.S.: Improving the fidelity of teleportation through noisy channels using weak measurement. Phys. Lett. A 377(13), 3209 (2013)ADSMathSciNetzbMATHGoogle Scholar
  47. 47.
    Qiu, L., Tang, G., Yang, X., Wang, A.: Enhancing teleportation fidelity by means of weak measurements or reversal. Ann. Phys. 350, 137 (2014)ADSMathSciNetzbMATHGoogle Scholar
  48. 48.
    Albeverio, S., Fei, S.-M., Yang, W.-L.: Optimal teleportation based on bell measurements. Phys. Rev. A 66, 012301 (2002)ADSGoogle Scholar
  49. 49.
    Bandyopadhyay, S.: Origin of noisy states whose teleportation fidelity can be enhanced through dissipation. Phys. Rev. A 65, 022302 (2002)ADSGoogle Scholar
  50. 50.
    Badziag, P., Horodecki, M., Horodecki, P., Horodecki, R.: Local environment can enhance fidelity of quantum teleportation. Phys. Rev. A 62, 012311 (2000)ADSGoogle Scholar
  51. 51.
    Knoll, L.T., Schmiegelow, C.T., Larotonda, M.A.: Noisy quantum teleportation: an experimental study on the influence of local environments. Phys. Rev. A 90, 042332 (2014)ADSGoogle Scholar
  52. 52.
    Taketani, B.G., de Melo, F., de Filho, R.L.: Optimal teleportation with a noisy source. Phys. Rev. A 85, 020301 (2012)ADSGoogle Scholar
  53. 53.
    Bandyopadhyay, S., Ghosh, A.: Optimal fidelity for a quantum channel may be attained by nonmaximally entangled states. Phys. Rev. A 86, 020304(R) (2012)ADSGoogle Scholar
  54. 54.
    Fortes, R., Rigolin, G.: Fighting noise with noise in realistic quantum teleportation. Phys. Rev. A 92, 012338 (2015)ADSGoogle Scholar
  55. 55.
    Fortes, R., Rigolin, G.: Probabilistic quantum teleportation in the presence of noise. Phys. Rev. A 93, 062330 (2016)ADSGoogle Scholar
  56. 56.
    Shi, J.D., Wang, D., Ye, L.: Entanglement revive and information flow within the decoherent environment. Sci. Rep. 6, 30710 (2016)ADSGoogle Scholar
  57. 57.
    Xie, Y.X., Xi, X.Q.: Improving teleportation fidelity in structured reservoirs. Opt. Commun. 298, 267 (2013)ADSGoogle Scholar
  58. 58.
    Garraway, B.M.: Nonperturbative decay of an atomic system in a cavity. Phys. Rev. A 55, 2290 (1997)ADSGoogle Scholar
  59. 59.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  60. 60.
    Haseli, S., Karpat, G., Salimi, S., Khorashad, A.S., Fanchini, F.F., Çakmak, B., Aguilar, G.H., Walborn, S.P., Ribeiro, P.H.S.: Non-Markovianity through flow of information between a system and an environment. Phys. Rev. A 90, 052118 (2014)ADSGoogle Scholar
  61. 61.
    Sakurai, J.J.: Modern Quantum Mechanics. Addison Wesley Publishing Company, Boston (1994)Google Scholar
  62. 62.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)ADSzbMATHGoogle Scholar
  63. 63.
    Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)ADSGoogle Scholar
  64. 64.
    Sabín, C., García-Alcaine, G.: A classification of entanglement in three-qubit systems. Eur. Phys. J. D 48, 435 (2008)ADSMathSciNetGoogle Scholar
  65. 65.
    Eisert, J., Plenio, M.B.: A comparison of entanglement measures. J. Mod. Opt. 46(1), 145 (1999)ADSGoogle Scholar
  66. 66.
    Miranowicz, A., Grudka, A.: Ordering two-qubit states with concurrence and negativity. Phys. Rev. A 70, 032326 (2004)ADSGoogle Scholar
  67. 67.
    Verstraete, F., Audenaert, K., Dehaene, J., De Moor, B.: A comparison of the entanglement measures negativity and concurrence. J. Phys. A Math. Gen 34(57), 10327 (2001)ADSMathSciNetzbMATHGoogle Scholar
  68. 68.
    Miranowicz, A., Grudka, A.: A comparative study of relative entropy of entanglement, concurrence and negativity. J. Opt. B Quantum Semiclass. Opt 6(12), 542 (2004)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsHanoi National University of EducationHanoiVietnam

Personalised recommendations