Optimal fidelity for quantum teleportation protocol of an arbitrary qubit state affected by amplitude-damping noise: causes and results
- 128 Downloads
Abstract
The improvement of the average fidelity of the quantum teleportation protocol of an arbitrary qubit state has been researched. The initial quantum channel is chosen as the non-maximally entangled state, and this state depends on a free parameter. One qubit of this quantum channel is influenced by the amplitude-damping noise environment in the Markovian regime or the non-Markovian regime. The average fidelity is enhanced efficiently through the appropriately selected free parameter of the initial quantum channel. The optimization could not be attributed to the probability as well as the noise environment that makes the initial quantum channel becomes the closest quantum channel to the maximally entangled one. Our study shows that the average fidelity is enhanced as the quantum entanglement of the initial quantum channel is harmoniously redistributed into the entanglement of quantum channel influenced by the noise environment and the entanglement between each of the qubits in this quantum channel and the noise environment.
Keywords
Initial quantum channel Free parameter Amplitude-damping noise environment Optimal average fidelityNotes
Acknowledgements
This work is supported by the Vietnam Ministry of Education and Training under Grant Number B2018-SPH-48. We would like to thank Nguyen Ba An for his interests in the manuscript.
References
- 1.Bennett, B.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetzbMATHGoogle Scholar
- 2.Vaidman, L.: Teleportation of quantum states. Phys. Rev. A 49, 1473 (1994)ADSGoogle Scholar
- 3.Braunstein, S.L., Kimble, H.J.: Teleportation of continuous quantum variables. Phys. Rev. Lett. 80, 869 (1998)ADSGoogle Scholar
- 4.Adesso, G., Illuminati, F.: Equivalence between entanglement and the optimal fidelity of continuous variable teleportation. Phys. Rev. Lett. 95, 150503 (2005)ADSGoogle Scholar
- 5.Dell’Anno, F., Siena, S.D., Albano, L., Illuminati, F.: Continuous-variable quantum teleportation with non-Gaussian resources. Phys. Rev. A 76, 022301 (2007)ADSGoogle Scholar
- 6.Adhikari, S., Majumdar, A.S., Nayak, N.: Teleportation of two-mode squeezed states. Phys. Rev. A 77, 012337 (2008)ADSGoogle Scholar
- 7.Adhikari, S., Majumdar, A.S., Roy, S., Ghosh, B., Nayak, N.: Teleportation via maximally and non-maximally entangled mixed states. Quantum Inf. Comput. 10, 0398 (2010)MathSciNetzbMATHGoogle Scholar
- 8.Ganguly, N., Adhikari, S., Majumdar, A.S., Chatterjee, J.: Entanglement witness operator for quantum teleportation. Phys. Rev. Lett. 107, 270501 (2011)Google Scholar
- 9.Adhikari, S., Majumdar, A.S., Home, D., Pan, A.K., Joshi, P.: Quantum teleportation using non-orthogonal entangled channels. Phys. Scr. 85, 045001 (2012)ADSzbMATHGoogle Scholar
- 10.Sazim, Sk, Adhikari, S., Banerjee, S., Pramanik, T.: Quantification of entanglement of teleportation in arbitrary dimensions. Quantum Inf. Process 13, 863 (2014)ADSMathSciNetzbMATHGoogle Scholar
- 11.Liu, D., Huang, Z., Guo, X.: Probabilistic teleportation via quantum channel with partial information. Entropy 17(6), 3621 (2015)ADSMathSciNetGoogle Scholar
- 12.Kiktenko, E.O., Popov, A.A., Fedorov, A.K.: Bidirectional imperfect quantum teleportation with a single Bell state. Phys. Rev. A 93, 062305 (2016)ADSGoogle Scholar
- 13.Cavalcanti, D., Skrzypczyk, P., Šupić, I.: All entangled states can demonstrate nonclassical teleportation. Phys. Rev. Lett. 119, 110501 (2017)ADSGoogle Scholar
- 14.Jeongho, B., Junghee, R., Kaszlikowski, D.: Fidelity deviation in quantum teleportation. J. Phys. A Math. Theor. 51, 135302 (2018)ADSMathSciNetzbMATHGoogle Scholar
- 15.Quan, Q., Zhao, M.J., Fei, S.M., Fan, H., Yang, W.L., Long, G.L.: Two-copy quantum teleportation. Sci. Rep. 8, 13960 (2018)ADSGoogle Scholar
- 16.Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575 (1997)ADSzbMATHGoogle Scholar
- 17.Boschi, D., Branca, S., Martini, F.D., Hardy, L., Popescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121 (1998)ADSMathSciNetzbMATHGoogle Scholar
- 18.Furusawa, A., Sørensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S.: Unconditional quantum teleportation. Science 282, 706 (1998)ADSGoogle Scholar
- 19.Zhang, T.C., Goh, K.W., Chou, C.W., Lodahl, P., Kimble, H.J.: Quantum teleportation of light beams. Phys. Rev. A 67, 033802 (2003)ADSGoogle Scholar
- 20.Takei, N., Yonezawa, H., Aoki, T., Furusawa, A.: High-fidelity teleportation beyond the no-cloning limit and entanglement swapping for continuous variables. Phys. Rev. Lett. 94, 220502 (2005)ADSGoogle Scholar
- 21.DiGuglielmo, J., Hage, B., Franzen, A., Fiurášek, J., Schnabel, R.: Experimental characterization of Gaussian quantum-communication channels. Phys. Rev. A 76, 012323 (2007)ADSGoogle Scholar
- 22.Xiao, S.M., Herbst, T., Scheidl, T., Wang, D., Kropatschek, S., Naylor, W., Wittmann, B., Mech, A., Kofler, J., Anisimova, E., Makarov, V., Jennewein, T., Ursin, R., Zeilinger, A.: Quantum teleportation over 143 kilometres using active feed-forward. Nature 489, 269 (2012)ADSGoogle Scholar
- 23.Wang, X.L., Cai, X.D., Su, Z.E., Chen, M.C., Wu, D., Li, L., Liu, N.L., Lu, C.Y., Pan, J.W.: Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516 (2015)ADSGoogle Scholar
- 24.Valivarthi, R., Puigibert, MliG, Zhou, Q., Aguilar, G.H., Verma, V.B., Marsili, F., Shaw, M.D., Nam, S.W., Oblak, D., Tittel, W.: Quantum teleportation across a metropolitan fibre network. Nat. Photonics 10, 676 (2016)ADSGoogle Scholar
- 25.Lee, J., Min, H., Oh, S.D.: Multipartite entanglement for entanglement teleportation. Phys. Rev. A 66, 052318 (2002)ADSGoogle Scholar
- 26.Rigolin, G.: Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement. Phys. Rev. A 71, 032303 (2005)ADSGoogle Scholar
- 27.Zhang, Q., Goebel, A., Wagenknecht, C., Chen, Y.A., Zhao, B., Yang, T., Mair, A., Schmiedmayer, J., Pan, J.W.: Experimental quantum teleportation of a two-qubit composite system. Nat. Phys. 2, 678 (2006)Google Scholar
- 28.Zhao, M.J., Li, Z.G., Jost, X.L., Fei, S.M.: Multiqubit quantum teleportation. J. Phys. A Math. Theor. 45, 405303 (2012)MathSciNetzbMATHGoogle Scholar
- 29.Zhao, H.P., Jian, Z., Liu, X.J., Kuang, L.M.: Construction of general quantum channel for quantum teleportation. Quantum Inf. Process. 12, 2803 (2013)ADSMathSciNetzbMATHGoogle Scholar
- 30.Li, Y.H., Li, X.L., Nie, L.P., Sang, M.H.: Quantum teleportation of three and four-qubit state using multi-qubit cluster states. Int. J. Theor. Phys. 55, 1820 (2016)zbMATHGoogle Scholar
- 31.Cai, T., Jiang, M.: Improving the teleportation scheme of three-qubit state with a four-qubit quantum channel. Int. J. Theor. Phys. 57, 131 (2018)ADSzbMATHGoogle Scholar
- 32.Popescu, S.: Bell’s inequalities versus teleportation: what is nonlocality? Phys. Rev. Lett. 72, 797 (1994)ADSMathSciNetzbMATHGoogle Scholar
- 33.Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)ADSMathSciNetzbMATHGoogle Scholar
- 34.Ishizaka, S.: Quantum channel locally interacting with environment. Phys. Rev. A 63, 034301 (2001)ADSGoogle Scholar
- 35.Oh, S., Lee, S., Lee, H.W.: Fidelity of quantum teleportation through noisy channels. Phys. Rev. A 66, 022316 (2002)ADSMathSciNetGoogle Scholar
- 36.Horodecki, M., Horodecki, P., Horodecki, R.: General teleportation channel, singlet fraction, and quasi-distillation. Phys. Rev. A 60, 1888 (1999)ADSMathSciNetzbMATHGoogle Scholar
- 37.Yeo, Y., Kho, Z.W., Wang, L.: Effects of Pauli channels and noisy quantum operations on standard teleportation. EPL 86(4), 40009 (2009)ADSGoogle Scholar
- 38.Hu, M.L.: Teleportation of the one-qubit state in decoherence environments. J. Phys. B At. Mol. Opt. Phys. 44, 025502 (2011)ADSGoogle Scholar
- 39.Hu, M.L.: Environment-induced decay of teleportation fidelity of the one-qubit state. Phys. Lett. A 375, 2140 (2011)ADSGoogle Scholar
- 40.Hu, M.L.: Robustness of Greenberger–Horne–Zeilinger and W states for teleportation in external environments. Phys. Lett. A 375, 922 (2011)ADSGoogle Scholar
- 41.Man, Z.X., Xia, Y.J.: Quantum teleportation in a dissipative environment. Quantum Inf. Process 11(6), 1911 (2012)ADSMathSciNetzbMATHGoogle Scholar
- 42.Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)ADSGoogle Scholar
- 43.Pan, J.W., Simon, C., Brukner, C., Zeilinger, A.: Entanglement purification for quantum communication. Nature 410, 1067 (2001)ADSGoogle Scholar
- 44.Romero, J.L., Roa, L., Retamal, J.C., Saavedra, C.: Entanglement purification in cavity QED using local operations. Phys. Rev. A 65, 052319 (2002)ADSGoogle Scholar
- 45.Rozpedek, F., Schiet, T., Thinh, L.P., Elkouss, D., Doherty, A.C., Wehner, S.: Optimizing practical entanglement distillation. Phys. Rev. A 97, 062333 (2018)ADSGoogle Scholar
- 46.Pramanik, T., Majumdar, A.S.: Improving the fidelity of teleportation through noisy channels using weak measurement. Phys. Lett. A 377(13), 3209 (2013)ADSMathSciNetzbMATHGoogle Scholar
- 47.Qiu, L., Tang, G., Yang, X., Wang, A.: Enhancing teleportation fidelity by means of weak measurements or reversal. Ann. Phys. 350, 137 (2014)ADSMathSciNetzbMATHGoogle Scholar
- 48.Albeverio, S., Fei, S.-M., Yang, W.-L.: Optimal teleportation based on bell measurements. Phys. Rev. A 66, 012301 (2002)ADSGoogle Scholar
- 49.Bandyopadhyay, S.: Origin of noisy states whose teleportation fidelity can be enhanced through dissipation. Phys. Rev. A 65, 022302 (2002)ADSGoogle Scholar
- 50.Badziag, P., Horodecki, M., Horodecki, P., Horodecki, R.: Local environment can enhance fidelity of quantum teleportation. Phys. Rev. A 62, 012311 (2000)ADSGoogle Scholar
- 51.Knoll, L.T., Schmiegelow, C.T., Larotonda, M.A.: Noisy quantum teleportation: an experimental study on the influence of local environments. Phys. Rev. A 90, 042332 (2014)ADSGoogle Scholar
- 52.Taketani, B.G., de Melo, F., de Filho, R.L.: Optimal teleportation with a noisy source. Phys. Rev. A 85, 020301 (2012)ADSGoogle Scholar
- 53.Bandyopadhyay, S., Ghosh, A.: Optimal fidelity for a quantum channel may be attained by nonmaximally entangled states. Phys. Rev. A 86, 020304(R) (2012)ADSGoogle Scholar
- 54.Fortes, R., Rigolin, G.: Fighting noise with noise in realistic quantum teleportation. Phys. Rev. A 92, 012338 (2015)ADSGoogle Scholar
- 55.Fortes, R., Rigolin, G.: Probabilistic quantum teleportation in the presence of noise. Phys. Rev. A 93, 062330 (2016)ADSGoogle Scholar
- 56.Shi, J.D., Wang, D., Ye, L.: Entanglement revive and information flow within the decoherent environment. Sci. Rep. 6, 30710 (2016)ADSGoogle Scholar
- 57.Xie, Y.X., Xi, X.Q.: Improving teleportation fidelity in structured reservoirs. Opt. Commun. 298, 267 (2013)ADSGoogle Scholar
- 58.Garraway, B.M.: Nonperturbative decay of an atomic system in a cavity. Phys. Rev. A 55, 2290 (1997)ADSGoogle Scholar
- 59.Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
- 60.Haseli, S., Karpat, G., Salimi, S., Khorashad, A.S., Fanchini, F.F., Çakmak, B., Aguilar, G.H., Walborn, S.P., Ribeiro, P.H.S.: Non-Markovianity through flow of information between a system and an environment. Phys. Rev. A 90, 052118 (2014)ADSGoogle Scholar
- 61.Sakurai, J.J.: Modern Quantum Mechanics. Addison Wesley Publishing Company, Boston (1994)Google Scholar
- 62.Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)ADSzbMATHGoogle Scholar
- 63.Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)ADSGoogle Scholar
- 64.Sabín, C., García-Alcaine, G.: A classification of entanglement in three-qubit systems. Eur. Phys. J. D 48, 435 (2008)ADSMathSciNetGoogle Scholar
- 65.Eisert, J., Plenio, M.B.: A comparison of entanglement measures. J. Mod. Opt. 46(1), 145 (1999)ADSGoogle Scholar
- 66.Miranowicz, A., Grudka, A.: Ordering two-qubit states with concurrence and negativity. Phys. Rev. A 70, 032326 (2004)ADSGoogle Scholar
- 67.Verstraete, F., Audenaert, K., Dehaene, J., De Moor, B.: A comparison of the entanglement measures negativity and concurrence. J. Phys. A Math. Gen 34(57), 10327 (2001)ADSMathSciNetzbMATHGoogle Scholar
- 68.Miranowicz, A., Grudka, A.: A comparative study of relative entropy of entanglement, concurrence and negativity. J. Opt. B Quantum Semiclass. Opt 6(12), 542 (2004)ADSGoogle Scholar