Advertisement

Robust correlations in a dissipative two-qubit system interacting with two coupled fields in a non-degenerate parametric amplifier

  • A.-B. A. MohamedEmail author
  • H. A. Hessian
  • H. Eleuch
Article
  • 53 Downloads

Abstract

The collective model of two qubit systems with an intrinsic decoherence effect is analytically explored. Each qubit system interacts with two coupled fields in the non-degenerate parametric amplifier (via two-photon non-degenerate transitions). We investigate the dynamics of the Bures entanglement and non-local correlations based on the trace-norm measurement-induced non-locality and the maximum Bell function. Under different considerations (initial coherence intensities of the two coupled fields, resonance detunings, and intrinsic decoherence), the robustness of the initial quantum correlations is investigated. We show that the sudden death and birth of Bures entanglement, the stationary correlation of trace-norm as well as the Bell-function correlations can be controlled. The trace-norm measurement-induced non-locality presents a good robustness against the intrinsic decoherence and the detuning, unlike the maximal Bell-function correlation and Bures entanglement.

Keywords

Qubit systems Intrinsic decoherence Trace-norm Bell function 

Notes

Acknowledgements

We would like to thank the referees for their useful remarks, which helped us to improve the manuscript.

References

  1. 1.
    Majer, J., Chow, J.M., Gambetta, J.M., Koch, J., Johnson, B.R., Schreier, J.A., Frunzio, L., Schuster, D.I., Houck, A.A., Wallraff, A., Blais, A., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Coupling superconducting qubits via a cavity bus. Nature 449, 443 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    Duan, L.M., Lukin, M.D., Cirac, J.I., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    Roch, N., Schwartz, M.E., Motzoi, F., Macklin, C., Vijay, R., Eddins, A.W., Korotkov, A.N., Whaley, K.B., Sarovar, M., Siddiqi, I.: Observation of measurement-induced entanglement and quantum trajectories of remote superconducting qubits. Phys. Rev. Lett. 112, 170501 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    Obada, A.-S.F., Hessian, H.A., Mohamed, A.-B.A., Homid, A.H.: Efficient protocol of N-bit discrete quantum Fourier transform via transmon qubits coupled to a resonator. Quantum Inf. Process. 13, 475 (2014) ADSCrossRefGoogle Scholar
  5. 5.
    Obada, A.-S.F., Hessian, H.A., Mohamed, A.-B.A., Homid, A.H.: Implementing discrete quantum Fourier transform via superconducting qubits coupled to a superconducting cavity. J. Opt. Soc. Am. B 30, 1178 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    Lin, J.-B., Liang, Y., Song, C., Ji, X., Zhang, S.: Generation of 3D entanglement between two spatially separated atoms via shortcuts to adiabatic passage. J. Opt. Soc. Am. B 33, 519 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    Mohamed, A.-B.A., Hessian, H.A.: Non-classical correlations in the general state of two SC-qubit with a phase damping: non-local correlation and geometric discord. J. Mod. Opt. 64, 521 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Majer, J., Devoret, M., Girvin, S.M., Schoelkopf, R.J.: Approaching unit visibility for control of a superconducting qubit with dispersive readout. Phys. Rev. Lett. 95, 060501 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    Mohamed, A.-B.A., Eleuch, H.: Non-classical effects in cavity QED containing a nonlinear optical medium and a quantum well Entanglement and non-Gaussanity. Eur. Phys. J. D 69, 191 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    Mohamed, A.-B.A.: Quantum correlation of correlated two qubits interacting with a thermal field. Phys. Scr. 85, 055013 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    Mohamed, A.-B.A., Joshi, A., Hassan, S.S.: Bipartite non-local correlations in a double-quantum-dot excitonic system. J. Phys. A 33, 335301 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Sete, E.A., Eleuch, H., Ooi, C.H.R.: Entanglement between exciton and mechanical modes via dissipation-induced coupling. Phys. Rev. A 92, 033843 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    Bennett, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature 404, 247 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    Aolita, L., deMelo, F., Davidovich, L.: Open-system dynamics of entanglement: a key issues review. Rep. Prog. Phys. 78, 042001 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    Obada, A.-S.F., Hessian, H.A., Mohamed, A.-B.A.: Influence of phase damping on the entanglement for the damped JC model in the pure and mixed states. Laser Phys. 18, 1111 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    Mohamed, A.-B.A.: Long-time death of nonclassicality of a cavity field interacting with a charge qubit and its own reservoir. Phys. Lett. A 374, 4115 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Mohamed, A.-B.A., Eleuch, H.: Generation and robustness of bipartite non-classical correlations in two nonlinear microcavities coupled by an optical fiber. J. Opt. Soc. Am. B 35, 47 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    Sete, E.A., Eleuch, H.: Strong squeezing and robust entanglement in cavity electromechanics. Phys. Rev. A 89, 013841 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    Eleuch, H., Rotter, I.: Open quantum systems and Dicke superradiance. Eur. Phys. J. D 68, 74 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    Clauser, J.F., Horne, M.A., Shimony, A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)ADSCrossRefGoogle Scholar
  21. 21.
    Luo, S.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    Luo, S., Fu, S.: Measurement-induced nonlocality. Phys. Rev. Lett. 106, 120401 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    Dakic, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for non-zero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Piani, M.: Problem with geometric discord. Phys. Rev. A 86, 034101 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    Hu, M.L., Fan, H.: Measurement-induced nonlocality based on the trace norm. New J. Phys. 17, 033004 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    Hu, M.-L., Hu, X., Wang, J., Peng, Y., Zhang, Y.-R., Fan, H.: Quantum coherence and geometric quantum discord. Phys. Rep. 762, 1–100 (2018)ADSMathSciNetzbMATHGoogle Scholar
  28. 28.
    Paula, F.M., de Oliveira, T.R., Sarandy, M.S.: Geometric quantum discord through the Schatten 1-norm. Phys. Rev. A 87, 064101 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    Mohamed, A.-B.A.: Bipartite non-classical correlations for a lossy two connected qubit-cavity systems: trace distance discord and Bell’s non-locality. Quantum Inf. Process. 17, 96 (2018)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Mohamed, A.-B.A., Metwally, N.: Enhancing non-local correlations in a dissipative two-qubit system via dipole dipole interplay. Quantum Inf. Process. 18, 79 (2019)ADSCrossRefGoogle Scholar
  31. 31.
    Xi, Z., Wang, X., Li, Y.: Measurement-induced nonlocality based on the relative entropy. Phys. Rev. A 85, 042325 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    Wigner, E.P., Yanase, M.M.: Information contents of distributions. Proc. Natl. Acad. Sci. USA 49, 910 (1963)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Girolami, D., Tufarelli, T., Adesso, G.: Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    Wu, S.-X., Zhang, J., Yu, C.-S., Song, H.-S.: Uncertainty-induced quantum nonlocality. Phys. Lett. A 378, 344 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    Mohamed, A.-B.A., Eleuch, H.: Quantum correlation control for two semiconductor microcavities connected by an optical fiber. Phys. Scr. 92, 065101 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    Mohamed, A.-B.A., Eleuch, H.: Stationary quantum correlation and coherence of two-mode Kerr nonlinear coupler interdicting with Su(2)-system under intrinsic damping. J. Mod. Opt. 65, 2213 (2018)ADSGoogle Scholar
  37. 37.
    DiVincenzo, D.P.: The physical implementation of quantum computation. Fortschr. Phys. 48, 771 (2000)CrossRefGoogle Scholar
  38. 38.
    Milburn, G.J.: Intrinsic decoherence in quantum mechanics. Phys. Rev. A 44, 5401 (1991)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Mohamed, A.-B.A.: Non-local correlations via Wigner-Yanase skew information in two SC-qubit having mutual interaction under phase decoherence. Eur. Phys. J. D 71, 261 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    Coulamy, I.B., Warnes, J.H., Sarandy, M.S., Saguia, A.: Scaling of the local quantum uncertainty at quantum phase transitions. Phys. Lett. A 380, 1724 (2016)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    Wu, Y.-L., Deng, D.-L., Li, X., Sarma, S.D.: Intrinsic decoherence in isolated quantum systems. Phys. Rev. B 95, 014202 (2017)ADSCrossRefGoogle Scholar
  42. 42.
    Mohamed, A.-B.A., Metwally, N.: Non-classical correlations based on skew information for an entangled two qubit-system with non-mutual interaction under intrinsic decoherence. Ann. Phys. 381, 137 (2017)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    Khalil, E.M., Abdalla, M.S., Obada, A.S.-F.: Pair entanglement of two-level atoms in the presence of a nondegenerate parametric amplifier. J. Phys. B 43, 095507 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    Bashkirov, E.K.: Dynamics of the two-atom jaynes-cummings model with nondegenerate two-photon transitions. Laser Phys. 16, 1218 (2006)ADSCrossRefGoogle Scholar
  45. 45.
    Bashkirov, E.K., Mastyugin, M.S.: The influence of the dipole-dipole interaction and atomic coherence on the entanglement of two atoms with degenerate two-photon transitions. Opt. Spectrosc. 116, 630 (2014)ADSCrossRefGoogle Scholar
  46. 46.
    You, J.Q., Nori, F.: Atomic physics and quantum optics using superconducting circuits. Nature 474, 589 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    Bashkirov, E.K., Mastyugin, M.S.: The dynamics of entanglement in two-atom Tavis-Cummings model with non-degenerate two-photon transitions for four-qubits initial atom-field entangled states. Opt. Commun. 313, 170 (2014)ADSCrossRefGoogle Scholar
  48. 48.
    Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014)ADSCrossRefGoogle Scholar
  49. 49.
    Obada, A.-S.F., Mohamed, A.-B.A.: Death of entanglement and non-locality in a superconducting qubit-field entangled state in a thermal reservoir. Opt. Commun. 285, 3027 (2012)ADSCrossRefGoogle Scholar
  50. 50.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)ADSCrossRefGoogle Scholar
  51. 51.
    Streltsov, A., Kampermann, H., Bruss, D.: Linking a distance measure of entanglement to its convex roof. New J. Phys. 12, 123004 (2010)ADSCrossRefGoogle Scholar
  52. 52.
    Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)ADSCrossRefGoogle Scholar
  53. 53.
    Mohamed, A.-B.A., Hessian, H.A., Obada, A.-S.F.: Entanglement sudden death of a SC-qubit strongly coupled with a quantized mode of a lossy cavity. Phys. A 390, 519 (2011)CrossRefGoogle Scholar
  54. 54.
    Obada, A.-S.F., Mohamed, A.-B.A.: Death of entanglement and non-locality in a superconducting qubit-field entangled state in a thermal reservoir. Opt. Commun. 285, 3027 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A.-B. A. Mohamed
    • 1
    • 2
    Email author
  • H. A. Hessian
    • 3
  • H. Eleuch
    • 4
    • 5
  1. 1.Department of Mathematics, College of Science and Humanities in Al-AflajPrince Sattam bin Abdulaziz UniversityAl-KharjSaudi Arabia
  2. 2.Faculty of ScienceAssiut UniversityAssiutEgypt
  3. 3.Faculty of ScienceAl-Baha UniversityAl-BahaSaudi Arabia
  4. 4.Department of Applied Sciences and Mathematics, College of Arts and SciencesAbu Dhabi UniversityAbu DhabiUAE
  5. 5.Institute for Quantum Science and EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations